25.2.1《用列举法求概率》
一、概述
内容简述:《用列举法求概率》是人教版(2013)九年级上册第二十五章第二节,本节内容分2课时完成,本设计为第一课时的教学。主要内容是学习用列表法求概率。
地位与作用:概率在日常生活中、科学预测中有着非常重要而广泛的应用,因此它是整个初中数学的一个重点,也是数学研究的一个重要分支。本节内容是在学生已经对事件的可能性有了初步的认识,并能用直接列举法求简单事件的概率的基础上,再寻求一种更一般的列举方法求概率——列表法概率.在列举过程中培养学生思维的条理性,并把思考过程有条理、直观、简捷地呈现出来,使得列举结果不重不漏。又为今后进一步学习概率知识打下基础,起着承上启下的作用。二、教学目标分析
知识目标:
1.使学生在具体情境中了解概率的意义,能够运用列表法列举求简单随机事件发生的概率,进一步培养随机观念。
2.使学生能够从实际应用中体验列表法求概率的优越性。
能力目标:
通过猜想、实验、观察、推理,对应用“枚举法”与“列表法”求概率这两种方法的比较和探究,进一步发展学生抽象概括的能力,增强数学知识应用的能力,科学决策能力。
情感目标:
通过丰富的数学活动,交流成功的经验,体验数学活动充满着探索和创造,体会数学的应用价值,培养积极思维的学习习惯。
教学重点:
运用列表法求事件的概率.
教学难点:
如何使用列表法
三、学情分析
学生的生活经验不足,受认知水平的影响,对研究问题中的事件发生的结果的可能性有错误的直觉。列举的重复、遗漏是列举法求概率常出现的情况。
学生是学习的主体,要充分利用学生学习中所表现强烈的求知欲和好奇心,以及学生具备的一定的分析能力和逻辑推理能力,所形成的合作探究意识。在教学中设置贴近学生生活实际的问题情境,引导学生互相交流,师生共同探讨,使学生获取新知。?
四、教学策略选择与设计
本节课的教学中,为帮助学生建立正确的概率直觉,要让学生经历“猜测结果---进行试验-----分析实验结果”的过程。因此,我在教法上主要选择实验探究法和引导发现法,并利用多媒体辅助教学作直观呈现,增强实例教学的直观性和启发性。教学中倡导学生自主探究,动手实践,合作交流学习等方式,发挥学生的主体性,使学生的学习过程成为在老师引导下的“再创造”的过程。
五、教学资源与工具设计
?本节课的教学中,利用计算机辅助教学作直观呈现,增强实例教学的直观性和启发性。
六、教学过程
??(一)复习提问,巩固旧知
问题1.列举一次试验的所有可能结果时,学过哪些方法?
直接列举法.?
问题2.用列举法求概率的基本步骤是什么?
(1)列举出一次试验的所有可能结果;
(2)数出;
(3)计算概率.
【设计意图:本节课是用列举法求概率的第一节课,通过提问,对前一节课所学方法的步骤进行归纳,体现温故知新的教学原则,为本节课用列表法求概率做好铺垫】
(二)游戏激趣,引入课题
“手心手背”游戏:
1.一个人伸一只手(只能出手心、手背 )
2.俩人同时各出一只手
3.一只手先后出两次
引出问题:如果把此游戏换成抛质地均匀的硬币,结果是怎样的呢?
【设计意图:创设情境有利于问题自然、流畅地提出,提出问题是为了引发思考,思考的表现形式是探索尝试,激发学生积极主动的思维活动是我们每节课都应追求的目标。以 “手心手背”的游戏学生又非常熟悉,极大的激发学生的学习兴趣和参与意识.学生通过计算概率,既复习了上节课用直接列举法求简单事件的概率,又为下一环节探究用其它方法求概率做了铺垫。】
(三)小组合作,探究学习
1.学生分组实验,探索交流.
一个质地均匀的正四面体(四个面都是等边三角形),四个面上分别标有数字1,2,3,4.投掷这个四面体,观察底面上的数字
①投掷一次,可能结果是什么?它们出现的可能性相同吗?概率各是多大?
②投掷两次,共有多少种可能结果?
③同时投掷两枚,共有多少种可能结果?
在这个环节里,学生首先分组实验,探索交流.然后引导学生发现②中试验分两步;③中试验涉及两个因素。与试验①相比,可能产生的结果数目增多了,列举时很容易造成重复或遗漏。怎样避免这个问题呢?
于是,指导学生构造表格.
2.指导学生构造表格
先后投掷两次质地均匀的骰子,能产生多少种可能的结果?
1 2 3 4
1
2
3
4
师引导学生首先考虑第一次投掷向下一面可能是1,2,3,4四个数字中的任意一个,可能出现的结果就会有4个.接着第二次投掷向下一面可能是1,2,3,4四个数字中的任意一个,可能出现的结果也会有4个,这样一共会产生16种不同的结果。
③同时投掷两枚,共有多少种可能结果?学生可以类比先后投掷两次试验的分析把“同时投掷两枚”看做“一枚骰子先后投掷两次”的试验进行分析、讨论。
3.学生独立填写表格,通过观察与计算,得出结论(即列表法)
1 2 3 4
1
2
3
4
在学生填写表格过程中,注意向学生强调数对的有序性。
【设计意图:这样既分散了难点,又激发了学生兴趣,渗透了转化的数学思想。同时,让学生感受到可以把无序的“同时投掷两枚”试验转化为有序的“一枚先后投掷两次”试验进行计算的结果不变性,自然地感染了分步计数思想。】
(四)例题解析,应用新知 (教材136页)
例2:同时掷两枚质地均匀的骰子,计算下列事件的概率:
(1)两枚骰子的点数相同;
(2)两枚骰子点数的和是9;
(3)至少有一枚骰子的点数为2.
分析:当一次试验是掷两枚骰子时,为不重不漏地列出所有可能的结果,通常采用列表法。
具体过程见教材第137页.
归纳:当一个事件要涉及两个因素并且可能出现的结果数目较多时,通常采用列表法.运用列表法求概率的步骤如下:
(1)列表;
(2)通过表格计数,确定公式 ??中m和n的值;
(3)利用公式??计算事件的概率。
(五)课堂练习,巩固新知
有6张看上去无差别的卡片,上面分别写着1,2,3,4,5,6.随机抽取1张后,放回并混在一起,再随机抽取1张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?
(六)拓展练习,深化认知
小明和小亮做扑克游戏,从同一副扑克牌中拿出4张牌,分别是红桃和黑桃的2,3小明建议:我从红桃中随机抽取一张牌,你从黑桃中随机取一张,当两张牌数字之积为奇数时,你得1分,为偶数我得1分,先得到10分的获胜”。如果你是小亮,你愿意接受这个游戏的规则吗? 为什么?
(七)课堂小结,布置作业
(1)用列举法求概率的条件是什么?
(2)列表法适用于解决哪类概率求解问题?
(3)使用列表法求概率有哪些优点?
【设计意图:通过问题反思的形式引导学生回顾、归纳、表达,形成知识体系,培养学生归纳总结概括的能力,充分发挥学生的主体作用】
本课作业:1.教材 140--141页 习题25.2 第3、8、9题;
2.课后查阅“三人行,必有我师”中的数学原理。
教学基本流程:
活动1:复习提问 巩固旧知
活动2:复习提问 巩固旧知
活动3;小组合作 探究新知
活动4:例题精析 应用新知
活动5;课堂练习 巩固新知
活动6:拓展练习 深化认知
活动7:课堂小结 布置作业
七、教学评价设计九年级( )班学习小组评价表
月 日 值日班长 .
小 组 课前纪律 预习完成 预习检查 合作学习 展示过程 课堂点评 质疑答疑 当堂检测 课堂纪律 其 它 总 分
1
2
3
4
5
6
7
8
9
八、课堂学习检测
1.在一个暗箱里放入除颜色外其他都相同的3个红球和11个黄球,搅拌均匀后随机任取一个球,取到红球的概率是( ).
A. B. C. D.
2.号码锁上有2个拨盘,每个拨盘上有0~9共10个数字,能打开锁的号码只有一个.任意拨一个号码,能打开锁的概率是( ).
A.1 B. C. D.
3.有两条带子,第一条的一头是黑色,另一头是黄色,第二条的一头是黄色,另一头是白色.若任意选取这两条带子的一头,颜色各不相同的概率是( ).
A. B. C. D.
4.某校九年级学生中有5人在省数学竞赛中获奖,其中3人获一等奖,2人获二等奖.老师从5人中选2人向全校学生介绍学好数学的经验,则选出的2人中恰好一人是一等奖获得者,一人是二等奖获得者的概率是( ).
A. B. C. D.
5.同时掷两枚普通的骰子,“出现数字之积为奇数”与“出现数字之积为偶数”的概率分别是______,______.
6.请你设计一种均匀的正方体骰子,使得它掷出后满足下列所有条件:
(1)奇数点朝上的概率为
(2)大于6的点数与小于3的点数朝上的概率相同.
7.如图,两个转盘中指针落在每个数字上的机会相等,现同时转动A、B两个转盘,停止后,指针各指向一个数字.小力和小明利用这两个转盘做游戏,若两数之积为非负数则小力胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由.