分数乘法解决问题(一)教学设计
教学内容:
教材第13、14页的内容及练习四第1~3题。
教学目标:
1.使学生学会分析分数乘法应用题的数量关系,会应用一个数乘分数的意义解答两步计算的分数乘法应用题。
2.培养学生解决问题的能力,提高学生的分析能力。
3.进一步提高学生思考问题的逻辑性。
重点难点:
重点:掌握分数连乘的计算方法。
难点:会解答用分数连乘计算的实际问题。
教具学具:
教师:课件。
学生:课前准备一张长方形纸及常规学习用品。
教学过程
回顾旧知、练习画线段图
1、找一找,谁是表示单位“1”的量:
(1)足球的个数是篮球的5/7。
(2)女生人数与男生人数的4/5相等。
学生同桌讨论,集体订正。
2.找出下题中的数量关系,示范用线段图表示题目中的数量关系。
(1)白兔的只数占总只数的 1/3。
( )×1/3=( )
(2)甲数正好是乙数的4/5。
( )×4/5=( )
学生独立完成关系式,教师示范线段图的画法。
解决简单问题,导入新课
1、你能解决这两个问题吗?
(1)篮球有35个,足球的个数是篮球的5/7 ,足球有多少个?
(2)六(1)班有男生25人,女生人数与男生人数的 4/5相等,六(1)班有女生多少人?
组织交流从上述问题中获取的信息,独立解决一步计算的分数乘法问题。
2、揭示课题
生活中有很多问题都与我们学习的分数乘法有关,今天我们就利用分数乘法来解决生活中的问题。
出示例8,学习新知
一个大棚共480平方米,其中一半种各种萝卜,红萝卜地的面积占整块萝卜地的1/4。红萝卜地有多少平方米?
1、读题,明确题意。
2、引导学生折纸或画图。
提问:怎样用图表示已知条件和问题之间的数量关系?
提问:要求红萝卜地的面积,就要知道哪个量?(萝卜地的面积)
萝卜地的面积和哪个量有关系?(整个大棚的面积)
用下面的图来表示数量关系:
3、列式解答。
提问:根据以上分析,这道题应该怎样解答?
提问:怎样列综合算式解答?
根据综合算式,让学生说一说每一步分别求的是什么,每一步分别是把哪个数量看作单位“1”。
强调:分数连乘不必像整数、小数连乘那样,逐次计算,可以一次计算,遇到整数和分数相乘,要用整数与分数的分母约分,不能约分的直接与分数的分子相乘。
4、探讨不同的解题方法。
(1)、教师让学生将整张纸展开,观察并说说:从这张纸上,你能看出红萝卜地的面积占大棚面积的几分之几?(1/8)
(2)、小组交流。
提问:你还能用其他方法来计算红萝卜地的面积吗?
学生独立思考后进行小组交流。
(3)、组织汇报:
先求出红萝卜地的面积占大棚面积的几分之几:1/2×1/4=1/8.
再求出红萝卜地的面积:480×1/8=60(m2)
列成综合算式: 480×(1/2×1/8)=60(m2)
5、回顾与反思。
(1)、教师启发:刚才我们用两种不同的解题方法求出了红萝卜地的面积是60m2,现在我们能写答句了吗?对,不能,因为我们还没有对这个答案进行检验。大家能用自己喜欢的方法来检验一下这个答案的合理性吗?
(2)、学生尝试检验。
教师巡视,辅导有困难的学生。
(3)、组织全班交流。
也可以用下面方法进行检验:60÷240=1/4, 240÷480=1/2
只要学生的检验方法合理,教师都要给予肯定。
巩固练习
1、教册第14页“做一做”。
(1)、学生独立解答。
(2)、组织交流。
指名学生按照阅读与理解、画图与解答、回顾与反思的环节展开解答、交流。
教册第16页“练习三”第1、2、3题。
这三道题都是和“例8”类似的分数连乘问题,每道题都可以有两种不同的解题方法。练习时,教师可以先让学生独立解答,然后与同桌进行交流,最后全班讲评订正。
课堂小结
这节课,我们学习了分数连乘问题的解题方法。解题时,我们可以借助折纸或画图的方法来分析题意,理清解题思路,找到正确的解题方法。分数连乘问题一般有两种解题方法,可以先求出中间量,再通过中间量来求问题;也可以先计算所求量占已知量的几分之几,再求问题。
板书设计
解决问题(一)
方法一:480×1/2=240(m2) 方法二:1/2×1/4=1/8
240×1/4=60(m2) 480×1/8=60(m2)
综合算式:480×1/2×1/4 480×(1/2×1/4)
=60(m2) =60(m2)
答:红萝卜地有60(m2)。
课后反思
1.有部分学生不知道把哪一个数量看作单位“1”。
2.利用线段图可以引导学生直观地分析和理解数量关系,将抽象的数学知识直观化,降低学生学习的思维难度,但如何从形象思维过渡到抽象思维,这个过程不可能是一蹴而就的,而是需要有一个过程。