统计与概率检测卷
(时间:120分钟 满分:150分)
一、选择题(本大题共13小题,每小题4分,共52分.在每小题给出的四个选项中,第1~10题只有一项符合题目要求;第11~13题,有多项符合题目要求,全部选对得4分,选对但不全的得2分,有选错的不得分)
1.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层随机抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为( )
A.7 B.15
C.25 D.35
解析 由题意设样本容量为n,则=,解得n=15.
答案 B
2.若事件E与F相互独立,且P(E)=P(F)=,则P(EF)的值等于( )
A.0 B.
C. D.
解析 ∵E与F相互独立,P(E)=P(F)=.∴P(EF)=P(E)·P(F)=.
答案 B
3.从800件产品中抽取60件进行质检,利用随机数表法抽取样本时,先将800件产品按001,002,…,800进行编号.如果从随机数表第8行第8列的数8开始往右读数(随机数表第7行至第9行的数如下),则抽取的第4件产品的编号是( )
8442175331 5724550688 7704744767 2176335025 8392120676
6301637859 1695566719 9810507175 1286735807 4439523879
3321123429 7864560782 5242074438 1551001342 9966027954
A.169 B.556
C.671 D.105
解析 找到第8行第8列的数8,并开始向右读,每次读取三位,凡不在001~800中的数跳过去不读,前面已经读过的也跳过去不读,从而最先抽取的4件产品的编号依次是169,556,671,105.故抽取的第4件产品的编号是105.
答案 D
4.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,从中取出2粒都是白子的概率是.则从中任意取出2粒恰好是不同色的概率是( )
A. B.
C. D.
解析 易知事件“从中取出2粒都是黑子”和“从中取出2粒都是白子”为互斥事件,故任意取出2粒恰好是同一色的概率为+=,从而恰好是不同色的概率为1-=.
答案 D
5.经过中央电视台《魅力中国城》栏目的三轮角逐,黔东南州以三轮竞演总分排名第一名问鼎“最具人气魅力城市”.如图统计了黔东南州从2010年到2017年的旅游总人数(万人次)的变化情况,从一个侧面展示了大美黔东南的魅力所在.根据这个图表,在下列给出的黔东南州从2010年到2017年的旅游总人数的四个判断中,错误的是( )
A.旅游总人数逐年增加
B.2017年旅游总人数超过2015,2016两年的旅游总人数的和
C.从2010年~2013年旅游总人数增长缓慢
D.从2014年起旅游总人数增长加快
解析 从图表中看出:
在A中,旅游总人数逐年增加,故A不符合题意;
在B中,2017年旅游总人数没有超过2015,2016两年的旅游总人数的和,故B符合题意;
在C中,从2010年~2013年旅游总人数增长缓慢,故C不符合题意;
在D中,从2014年起旅游总人数增长加快,故D不符合题意.
答案 B
6.甲、乙两歼击机的飞行员向同一架敌机射击,设击中的概率分别为0.4,0.5,则恰有一人击中敌机的概率为( )
A.0.9 B.0.2
C.0.7 D.0.5
解析 设事件A,B分别表示甲、乙飞行员击中敌机,则P(A)=0.4,P(B)=0.5,A,B相互独立.事件“恰有一人击中敌机”的概率为P(A+B)=P(A)·[1-P(B)]+[1-P(A)]·P(B)=0.5.
答案 D
7.有关部门从甲、乙两个城市所有的自动售货机里随机抽取了15台,记录上午8:00~11:00间各自的销售情况(单位:元),用茎叶图表示,设甲、乙的平均数分别为1,2,标准差分别为s1,s2,则( )
A.1>2,s1>s2 B.1>2,s1C.1<2,s1s2
解析 根据公式得到1=(8+6+5+20+14+36+22+25+27+60+41+43)=,
2=(10+12+18+20+22+46+27+31+32+68+38+42+43)=,
故1<2,再将以上均值代入标准差的公式得到s1>s2.或者观察茎叶图,得到乙的数据更集中一些,故得到s1>s2.
答案 D
8.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )
A.0.5 B.0.6
C.0.7 D.0.8
解析 方法一 设调查的100位学生中阅读过《西游记》的学生人数为x,则x+80-60=90,解得x=70,
所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为=0.7.故选C.
方法二 用Venn图表示阅读过《西游记》和《红楼梦》的人数之间的关系如图:
易知调查的100位学生中阅读过《西游记》的学生人数为70,所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为=0.7.故选C.
答案 C
9.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为( )
A.64 B.54
C.48 D.27
解析 前两组中的频数为100×(0.05+0.11)=16.
因为后五组频数和为62,所以前三组频数和为38.
所以第三组频数为38-16=22.又最大频率为0.32,故第四组频数为0.32×100=32.所以a=22+32=54.故选B.
答案 B
10.袋中有大小相同的黄、红、白球各一个,每次任取一个,有放回地取3次,则下列事件的概率为的是( )
A.颜色相同 B.颜色不全同
C.颜色全不同 D.无红球
解析 有放回地取球3次,共27种可能结果,其中颜色相同的结果有3种,其概率为=;颜色不全同的结果有24种,其概率为=;颜色全不同的结果有6种,其概率为=;无红球的结果有8种,其概率为.故选B.
答案 B
11.下列数字特征一定会在原始数据中出现的是( )
A.众数 B.中位数
C.平均数 D.最值
解析 众数是在一组数据中出现次数最多的数,所以一定会在原始数据中出现,最值一定是原数据中的值.
答案 AD
12.气象台预测“本市明天降雨的概率是90%”,对预测的正确理解是( )
A.本市明天降雨的可能性是90%
B.本市明天将有90%的地区降雨
C.本市明天将有90%的时间降雨
D.明天出行不带雨具可能会淋雨
解析 “本市明天降雨的概率是90%”也即为“本市明天降雨的可能性为90%”.故选AD.
答案 AD
13.甲、乙两人做游戏,下列游戏中公平的是( )
A.抛一枚骰子,向上的点数为奇数则甲胜,向上的点数为偶数则乙胜
B.同时抛两枚相同的骰子,向上的点数之和大于7则甲胜,否则乙胜
C.从一副不含大、小王的扑克牌中抽一张,扑克牌是红色则甲胜,是黑色则乙胜
D.甲、乙两人各写一个数字,若是同奇或同偶则甲胜,否则乙胜
解析 对于A,C,D,甲胜、乙胜的概率都是,游戏是公平的;对于B,点数之和大于7和点数之和小于7的概率相等,但点数等于7时乙胜,所以甲胜的概率小,游戏不公平.
答案 ACD
二、填空题(本大题共4小题,每小题4分,其中多空题每空2分,共16分,把答案填在题中的横线上)
14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.
解析 ==0.98.
答案 0.98
15.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________.
解析 方法一 设3名男同学分别为A,B,C,2名女同学分别为a,b,则所有等可能事件分别为AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,ab,共10个,选出的2名同学中至少有1名女同学包含的基本事件分别为Aa,Ab,Ba,Bb,Ca,Cb,ab,共7个,故所求概率为.
方法二 同方法一,得所有等可能事件共10个,选出的2名同学中没有女同学包含的基本事件分别为AB,AC,BC,共3个,故所求概率为1-=.
答案
16.对飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没有击中飞机},C={恰有一次击中飞机},D={至少有一次击中飞机}.其中互为对立事件的是________.
解析 事件“两次都击中飞机”发生,则A与D都发生.
事件“恰有一次击中飞机”发生,则C与D都发生.
A与B,A与C,B与C,B与D都不可能同时发生,B与D中必有一个发生.
答案 B与D
17.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示:
(1)直方图中x的值为________;
(2)在这些用户中,用电量落在区间[100,250)内的户数为________.
解析 由于(0.002 4+0.003 6+0.006 0+x+0.002 4+0.001 2)×50=1,解得x=0.004 4;数据落在[100,250)内的频率是(0.003 6+0.006 0+0.004 4)×50=0.7,所以月用电量在[100,250)内的用户数为100×0.7=70.
答案 (1)0.004 4 (2)70
四、解答题(本大题共6小题,共82分.解答应写出文字说明、证明过程或演算步骤)
18.(12分)同学甲参加某科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错或不答均得零分.假设同学甲答对第一、二、三个问题的概率分别为0.8,0.6,0.5,且各题答对与否相互之间没有影响,求同学甲得分不低于300分的概率.
解 设“同学甲答对第i个题”为事件Ai(i=1,2,3),则P(A1)=0.8,P(A2)=0.6,P(A3)=0.5,且A1,A2,A3相互独立,同学甲得分不低于300分对应于事件A1A2A3∪A12A3∪1A2A3发生,故所求概率为
P=P(A1A2A3∪A12A3∪1A2A3)
=P(A1A2A3)+P(A12A3)+P(1A2A3)
=P(A1)P(A2)P(A3)+P(A1)P(2)P(A3)+
P(1)P(A2)P(A3)
=0.8×0.6×0.5+0.8×0.4×0.5+0.2×0.6×0.5
=0.46.
19.(14分)某中学高一女生共有450人,为了了解高一女生的身高(单位:cm)情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:
组别
频数
频率
[145.5,149.5)
8
0.16
[149.5,153.5)
6
0.12
[153.5,157.5)
14
0.28
[157.5,161.5)
10
0.20
[161.5,165.5)
8
0.16
[165.5,169.5]
m
n
合计
M
N
(1)求出表中字母m,n,M,N所对应的数值;
(2)画出频率分布直方图;
(3)估计该校高一女生身高在[149.5,165.5)范围内有多少人?
解 (1)由题意得M==50,落在区间[165.5,169.5]内的数据频数m=50-(8+6+14+10+8)=4,
频率为n=0.08,总频率N=1.00.
(2)频率分布直方图如图.
(3)该所学校高一女生身高在[149.5,165.5)之间的频率为0.12+0.28+0.20+0.16=0.76,则该校高一女生在此范围内的人数为450×0.76=342.
20.(14分)某校在教师外出培训学习活动中,一个月内派出的培训人数及其概率如下表所示:
派出人数
2人及以下
3
4
5
6人及以上
概率
0.1
0.46
0.3
0.1
0.04
(1)求有4个人或5个人培训的概率;
(2)求至少有3个人培训的概率.
解 (1)设有2人以下培训为事件A,有3人培训为事件B,有4人培训为事件C,有5人培训为事件D,有6人及以上培训为事件E,所以有4个人或5个人培训的事件为事件C或事件D,A,B,C,D,E为互斥事件,根据互斥事件有一个发生的概率的加法公式可知P(C∪D)=P(C)+P(D)=0.3+0.1=0.4,即有4个人或5个人培训的概率为0.4.
(2)至少有3个人培训的对立事件为有2人及以下培训,所以由对立事件的概率可知要求的概率为P=1-P(A)=1-0.1=0.9.
21.(14分)某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:
(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?
(2)假设同组中的每个数据用该组区间的右端点值代替.当w=3时,估计该市居民该月的人均水费.
解 (1)由用水量的频率分布直方图,知该市居民该月用水量在区间[0.5,1],(1,1.5],(1.5,2],(2,2.5],(2.5,3]内的频率依次为0.1,0.15,0.2,0.25,0.15.
所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.
依题意,w至少定为3.
(2)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表如下:
组号
1
2
3
4
5
6
7
8
分组
[2,4]
(4,6]
(6,8]
(8,10]
(10,12]
(12,17]
(17,22]
(22,27]
频率
0.1
0.15
0.2
0.25
0.15
0.05
0.05
0.05
根据题意,该市居民该月的人均水费估计为
4×0.1+6×0.15+8×0.2+10×0.25+12×0.15+17×0.05+22×0.05+27×0.05=10.5(元).
22.(14分)为了迎接2017在德国波恩举行的联合国气候大会,某社区举办《“环保我参与”有奖问答比赛》活动.某场比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题,已知甲家庭回答对这道题的概率是,甲、丙两个家庭都回答错的概率是,乙、丙两个家庭都回答对的概率是.若各家庭回答是否正确互不影响.
(1)求乙、丙两个家庭各自回答对这道题的概率;
(2)求甲、乙、丙三个家庭中不少于2个家庭回答对这道题的概率.
解 (1)记“甲家庭答对这道题”、“乙家庭答对这道题”、“丙家庭答对这道题”分别为事件A,B,C,则P(A)=,且有
即
所以P(B)=,P(C)=.
(2)有0个家庭回答对的概率为
P0=P( )=P()·P()·P()=××=,
有1个家庭回答对的概率为P1=P(A +B+ C)=××+××+××=,
所以不少于2个家庭回答对这道题的概率为P=1-P0-P1=1--=.
23.(14分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1 000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
支付金额
支付方式
不大于2 000元
大于2 000元
仅使用A
27人
3人
仅使用B
24人
1人
(1)估计该校学生中上个月A,B两种支付方式都使用的人数;
(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;
(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000元的人数有变化?说明理由.
解 (1)由题知,样本中仅使用A的学生有27+3=30(人),仅使用B的学生有24+1=25(人),A,B两种支付方式都不使用的学生有5人.
故样本中A,B两种支付方武都使用的学生有100-30-25-5=40(人).
估计该校学生中上个月A,B两种支付方式都使用的人数为×1 000=400.
(2)记事件C为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”,则
P(C)= =0.04.
(3)记事件E为“从样本仅使用B的学生中随机抽查1人,该学生本月的支付金额大于2 000元”.
假设样本仅使用B的学生中,本月支付金额大于2 000元的人数没有变化,则由(2)知,P(E)=0.04.
答案示例1:可以认为有变化.理由如下:
P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化.所以可以认为有变化.
答案示例2:无法确定有没有变化.理由如下:
事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的.所以无法确定有没有变化.
统计与概率检测卷
(时间:120分钟 满分:150分)
一、选择题(本大题共13小题,每小题4分,共52分.在每小题给出的四个选项中,第1~10题只有一项符合题目要求;第11~13题,有多项符合题目要求,全部选对得4分,选对但不全的得2分,有选错的不得分)
1.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层随机抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为( )
A.7 B.15
C.25 D.35
2.若事件E与F相互独立,且P(E)=P(F)=,则P(EF)的值等于( )
A.0 B.
C. D.
3.从800件产品中抽取60件进行质检,利用随机数表法抽取样本时,先将800件产品按001,002,…,800进行编号.如果从随机数表第8行第8列的数8开始往右读数(随机数表第7行至第9行的数如下),则抽取的第4件产品的编号是( )
8442175331 5724550688 7704744767 2176335025 8392120676
6301637859 1695566719 9810507175 1286735807 4439523879
3321123429 7864560782 5242074438 1551001342 9966027954
A.169 B.556
C.671 D.105
4.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为,从中取出2粒都是白子的概率是.则从中任意取出2粒恰好是不同色的概率是( )
A. B.
C. D.
5.经过中央电视台《魅力中国城》栏目的三轮角逐,黔东南州以三轮竞演总分排名第一名问鼎“最具人气魅力城市”.如图统计了黔东南州从2010年到2017年的旅游总人数(万人次)的变化情况,从一个侧面展示了大美黔东南的魅力所在.根据这个图表,在下列给出的黔东南州从2010年到2017年的旅游总人数的四个判断中,错误的是( )
A.旅游总人数逐年增加
B.2017年旅游总人数超过2015,2016两年的旅游总人数的和
C.从2010年~2013年旅游总人数增长缓慢
D.从2014年起旅游总人数增长加快
6.甲、乙两歼击机的飞行员向同一架敌机射击,设击中的概率分别为0.4,0.5,则恰有一人击中敌机的概率为( )
A.0.9 B.0.2
C.0.7 D.0.5
7.有关部门从甲、乙两个城市所有的自动售货机里随机抽取了15台,记录上午8:00~11:00间各自的销售情况(单位:元),用茎叶图表示,设甲、乙的平均数分别为1,2,标准差分别为s1,s2,则( )
A.1>2,s1>s2 B.1>2,s1C.1<2,s1s2
8.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )
A.0.5 B.0.6
C.0.7 D.0.8
9.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为( )
A.64 B.54
C.48 D.27
10.袋中有大小相同的黄、红、白球各一个,每次任取一个,有放回地取3次,则下列事件的概率为的是( )
A.颜色相同 B.颜色不全同
C.颜色全不同 D.无红球
11.下列数字特征一定会在原始数据中出现的是( )
A.众数 B.中位数
C.平均数 D.最值
12.气象台预测“本市明天降雨的概率是90%”,对预测的正确理解是( )
A.本市明天降雨的可能性是90%
B.本市明天将有90%的地区降雨
C.本市明天将有90%的时间降雨
D.明天出行不带雨具可能会淋雨
13.甲、乙两人做游戏,下列游戏中公平的是( )
A.抛一枚骰子,向上的点数为奇数则甲胜,向上的点数为偶数则乙胜
B.同时抛两枚相同的骰子,向上的点数之和大于7则甲胜,否则乙胜
C.从一副不含大、小王的扑克牌中抽一张,扑克牌是红色则甲胜,是黑色则乙胜
D.甲、乙两人各写一个数字,若是同奇或同偶则甲胜,否则乙胜
二、填空题(本大题共4小题,每小题4分,其中多空题每空2分,共16分,把答案填在题中的横线上)
14.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.
15.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是________.
16.对飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没有击中飞机},C={恰有一次击中飞机},D={至少有一次击中飞机}.其中互为对立事件的是________.
17.从某小区抽取100户居民进行月用电量调查,发现其用电量都在50至350度之间,频率分布直方图如图所示:
(1)直方图中x的值为________;
(2)在这些用户中,用电量落在区间[100,250)内的户数为________.
四、解答题(本大题共6小题,共82分.解答应写出文字说明、证明过程或演算步骤)
18.(12分)同学甲参加某科普知识竞赛,需回答三个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错或不答均得零分.假设同学甲答对第一、二、三个问题的概率分别为0.8,0.6,0.5,且各题答对与否相互之间没有影响,求同学甲得分不低于300分的概率.
19.(14分)某中学高一女生共有450人,为了了解高一女生的身高(单位:cm)情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:
组别
频数
频率
[145.5,149.5)
8
0.16
[149.5,153.5)
6
0.12
[153.5,157.5)
14
0.28
[157.5,161.5)
10
0.20
[161.5,165.5)
8
0.16
[165.5,169.5]
m
n
合计
M
N
(1)求出表中字母m,n,M,N所对应的数值;
(2)画出频率分布直方图;
(3)估计该校高一女生身高在[149.5,165.5)范围内有多少人?
20.(14分)某校在教师外出培训学习活动中,一个月内派出的培训人数及其概率如下表所示:
派出人数
2人及以下
3
4
5
6人及以上
概率
0.1
0.46
0.3
0.1
0.04
(1)求有4个人或5个人培训的概率;
(2)求至少有3个人培训的概率.
21.(14分)某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:
(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?
(2)假设同组中的每个数据用该组区间的右端点值代替.当w=3时,估计该市居民该月的人均水费.
22.(14分)为了迎接2017在德国波恩举行的联合国气候大会,某社区举办《“环保我参与”有奖问答比赛》活动.某场比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题,已知甲家庭回答对这道题的概率是,甲、丙两个家庭都回答错的概率是,乙、丙两个家庭都回答对的概率是.若各家庭回答是否正确互不影响.
(1)求乙、丙两个家庭各自回答对这道题的概率;
(2)求甲、乙、丙三个家庭中不少于2个家庭回答对这道题的概率.
23.(14分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1 000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
支付金额
支付方式
不大于2 000元
大于2 000元
仅使用A
27人
3人
仅使用B
24人
1人
(1)估计该校学生中上个月A,B两种支付方式都使用的人数;
(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;
(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000元的人数有变化?说明理由.