首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
人教A版(2019)
必修 第一册
第三章 函数概念与性质
3.1 函数的概念及其表示
(新教材)高中数学人教A版必修第一册 3.1.2 函数的表示法(二)(34张PPT课件+学案)
文档属性
名称
(新教材)高中数学人教A版必修第一册 3.1.2 函数的表示法(二)(34张PPT课件+学案)
格式
zip
文件大小
1.7MB
资源类型
教案
版本资源
人教A版(2019)
科目
数学
更新时间
2019-12-11 10:07:03
点击下载
文档简介
3.1.2 函数的表示法(二)
学习目标 1.会用解析法及图象法表示分段函数.2.给出分段函数,能研究有关性质.
知识点 分段函数
1.一般地,分段函数就是在函数定义域内,对于自变量x的不同取值范围,有着不同的对应关系的函数.
2.分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.
3.作分段函数图象时,应分别作出每一段的图象.
1.函数f(x)=是分段函数.( √ )
2.分段函数尽管在定义域不同的部分有不同的对应关系,但它们是一个函数.( √ )
3.分段函数各段上的函数值集合的交集为?.( × )
4.分段函数的定义域是各段上自变量取值的并集.( √ )
一、分段函数求值
例1 已知函数f(x)=
试求f(-5),f(-),f 的值.
解 由-5∈(-∞,-2],-∈(-2,2),-∈(-∞,-2],知f(-5)=-5+1=-4,
f(-)=(-)2+2(-)=3-2.
因为f =-+1=-,
-2<-<2,
所以f =f
=2+2×
=-3=-.
延伸探究
1.本例条件不变,若f(a)=3,求实数a的值.
解 ①当a≤-2时,f(a)=a+1,所以a+1=3,
所以a=2>-2不合题意,舍去.
②当-2
即a2+2a-3=0.
所以(a-1)(a+3)=0,
所以a=1或a=-3.
因为1∈(-2,2),-3?(-2,2),
所以a=1符合题意.
③当a≥2时,2a-1=3,所以a=2符合题意.
综合①②③,当f(a)=3时,a=1或a=2.
2.本例条件不变,若f(x)>3,求x的取值范围.
解 ①当x≤-2时,x+1>3得x>2,
又x≤-2,所以x∈?.
②当-2
3得x>1或x<-3,
又-2
③当x≥2时,2x-1>3,得x>2,
又x≥2,所以x>2,
综上有x的取值范围是1
2.
反思感悟 (1)求分段函数的函数值的方法
①确定要求值的自变量属于哪一段区间.
②代入该段的解析式求值,当出现f(f(x0))的形式时,应从内到外依次求值.
(2)求某条件下自变量的值的方法.
先对x的取值范围分类讨论,然后代入不同的解析式,解方程求解,注意需检验所求的值是否在所讨论的区间内.
跟踪训练1 已知f(x)=
(1)求f(2),f ;
(2)若f(x)=,求x的值;
(3)若f(x)≥,求x的取值范围.
考点 分段函数
题点 分段函数与不等式结合
解 (1)f(2)=1,f =2=,
所以f =f =.
(2)f(x)=等价于①或②
解①得x=±,②的解集为?.
∴当f(x)=时,x=±.
(3)∵f(x)≥,
∴或
解得x≥或x≤-,
∴x的取值范围是∪.
二、分段函数的图象及应用
例2 已知函数f(x)=-x2+2,g(x)=x,令φ(x)=min{f(x),g(x)}(即f(x)和g(x)中的较小者).
(1)分别用图象法和解析式表示φ(x);
(2)求函数φ(x)的定义域,值域.
解 (1)在同一个坐标系中画出函数f(x),g(x)的图象如图①.
由图①中函数取值的情况,结合函数φ(x)的定义,可得函数φ(x)的图象如图②.
令-x2+2=x得x=-2或x=1.
结合图②,得出φ(x)的解析式为
φ(x)=
(2)由图②知,φ(x)的定义域为R,φ(1)=1,
∴φ(x)的值域为(-∞,1].
反思感悟 分段函数图象的画法
(1)作分段函数的图象时,分别作出各段的图象,在作第一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.
(2)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.
跟踪训练2 (1)已知函数f(x)=则函数f(x)的图象是( )
答案 A
解析 当x=-1时,y=0,即图象过点(-1,0),D错;当x=0时,y=1,即图象过点(0,1),C错;当x=1时,y=2,即图象过点(1,2),B错.故选A.
(2)已知函数f(x)的图象如图所示,则f(x)的解析式是______________.
答案 f(x)=
解析 由图可知,图象由两条线段(其中一条不含右端点)组成,
当-1≤x<0时,设f(x)=ax+b(a≠0),
将(-1,0),(0,1)代入解析式,
则∴∴f(x)=x+1.
当0≤x≤1时,设f(x)=kx(k≠0),
将(1,-1)代入,则k=-1.∴f(x)=-x.
即f(x)=
三、分段函数的实际应用
例3 A,B两地相距150公里,某汽车以每小时50公里的速度从A地到B地,在B地停留2小时之后,又以每小时60公里的速度返回A地.写出该车离A地的距离s(公里)关于时间t(小时)的函数关系,并画出函数图象.
解 (1)汽车从A地到B地,速度为50公里/小时,
则有s=50t,到达B地所需时间为=3(小时).
(2)汽车在B地停留2小时,则有s=150.
(3)汽车从B地返回A地,速度为60公里/小时,
则有s=150-60(t-5)=450-60t,
从B地到A地用时=2.5(小时).
综上可得:该汽车离A地的距离s关于时间t的函数关系为s=
函数图象如图所示.
反思感悟 分段函数模型应用的关键是确定分段的各分界点,即明确自变量的取值区间,对每一个区间进行分类讨论,从而写出相应的函数解析式.
1.函数f(x)=|x-1|的图象是( )
答案 B
解析 方法一 函数的解析式可化为y=
画出此分段函数的图象,故选B.
方法二 由f(-1)=2,知图象过点(-1,2),排除A,C,D,故选B.
2.设f(x)=则f(f(0))等于( )
A.1 B.0 C.2 D.-1
考点 分段函数
题点 分段函数求值
答案 C
3.设函数f(x)=若f(α)=4,则实数α等于( )
A.-4或-2 B.-4或2
C.-2或4 D.-2或2
答案 B
4.函数f(x)=的定义域为______,值域为________.
答案 (-1,1) (-1,1)
解析 定义域为各段的并集,即(0,1)∪{0}∪(-1,0)=(-1,1).
值域为各段的并集(0,1)∪{0}∪(-1,0)=(-1,1).
5.已知f(n)=则f(8)=________.
答案 10
解析 因为8<10,所以f(8)=f(8+5)=f(13),
又13>10,所以f(13)=13-3=10,所以f(8)=10.
1.知识清单:
(1)分段函数的概念及求值.
(2)分段函数的图象.
2.方法归纳:分类讨论、数形结合法.
3.常见误区:
(1)分段函数是一个函数,而不是几个函数.
(2)作分段函数图象时要注意衔接点的虚实.
1.函数f(x)=则f(2)等于( )
A.-1 B.0 C.1 D.2
答案 A
2.下列图形是函数y=x|x|的图象的是( )
答案 D
解析 函数y=x|x|=故选D.
3.设f(x)=若f(x)=3,则x等于( )
A.1 B.± C. D.
答案 D
解析 若即无解.
若即∴x=.
若即无解.
故x=.
4.已知函数f(x)的图象是两条线段(如图所示,不含端点),则f等于( )
A.- B.
C.- D.
答案 C
解析 f(x)=
∴f =-.
5.电讯资费调整后,市话费标准为:通话时间不超过3分钟收费0.2元;超过3分钟后,每增加1分钟收费0.1元,不足1分钟按1分钟计费.通话收费S(元)与通话时间t(分钟)的函数图象可表示为下图中的( )
答案 B
6.函数f(x)=的定义域是________.
考点 分段函数
题点 分段函数的定义域、值域
答案 [0,+∞)
解析 定义域为[0,1]∪(1,2)∪[2,+∞)=[0,+∞).
7.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水不超过10立方米的,按每立方米m元收费;用水超过10立方米的,超过部分按每立方米2m元收费.某职工某月缴水费16m元,则该职工这个月实际用水为________立方米.
考点 分段函数
题点 分段函数应用问题
答案 13
解析 该单位职工每月应缴水费y与实际用水量x满足的关系式为y=
由y=16m,可知x>10.
令2mx-10m=16m,解得x=13(立方米).
8.设函数f(x)=若f(a)>1,则实数a的取值范围是________.
答案 (4,+∞)
解析 当a≥0时,f(a)=a-1>1,
解得a>4,符合a≥0;
当a<0时,f(a)=>1,无解.
故a>4.
9.已知函数f(x)的解析式为f(x)=
(1)求f ,f ,f(-1)的值;
(2)画出这个函数的图象;
(3)求f(x)的最大值.
解 (1)∵>1,
∴f =-2×+8=5.
∵0<<1,∴f =+5=.
∵-1<0,∴f(-1)=-3+5=2.
(2)这个函数的图象如图.
在函数y=3x+5的图象上截取x≤0的部分,
在函数y=x+5的图象上截取0
在函数y=-2x+8的图象上截取x>1的部分.
图中实线组成的图形就是函数f(x)的图象.
(3)由函数图象可知,当x=1时,f(x)取最大值6.
10.已知函数f(x)=1+(-2
(1)用分段函数的形式表示函数f(x);
(2)画出函数f(x)的图象;
(3)写出函数f(x)的值域.
解 (1)当0≤x≤2时,f(x)=1+=1,
当-2
所以f(x)=
(2)函数f(x)的图象如图所示.
(3)由(2)知,f(x)在(-2,2]上的值域为[1,3).
11.设函数f(x)=若f(a)+f(-1)=2,则a等于( )
A.-3 B.±3 C.-1 D.±1
考点 分段函数
题点 分段函数求值
答案 D
解析 f(-1)==1.
∴f(a)+f(-1)=f(a)+1=2.
∴f(a)=1,即
① 或②
解①得a=1,解②得a=-1.
∴a=±1.
12.若定义运算a⊙b=则函数f(x)=x⊙(2-x)的值域为________.
答案 (-∞,1]
解析 由题意得f(x)=
画出函数f(x)的图象得值域是(-∞,1].
13.设函数f(x)=若f =4,则b=________.
答案
解析 f =3×-b=-b,∴f =4,
①无解;
②解得b=.
综上,b=.
14.某工厂八年来产品累积产量C(即前t年年产量之和)与时间t(年)的函数如图,下列四种说法中正确的是________.
①前三年中,产量增长的速度越来越快;
②前三年中,产量增长的速度越来越慢;
③第三年后,这种产品停止生产;
④第三年后,年产量保持不变.
答案 ②③
解析 由于纵坐标表示八年来前t年产品生产总量,②③正确.
15.已知函数f(x)=若f(1-x)=2,则x的取值范围是( )
A.? B.[0,2]
C.[-2,0] D.{-1}∪[0,2]
考点 分段函数
题点 分段函数求值
答案 D
解析 当-1≤1-x≤1,即0≤x≤2时,f(1-x)=2,满足条件,
所以0≤x≤2,
当1-x<-1或1-x>1即x<0或x>2时,f(1-x)=4-(1-x)=x+3=2,解得x=-1,满足条件,
综上有0≤x≤2或x=-1.
16.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:
(1)最初到达离家最远的地方是什么时间?离家多远?
(2)何时开始第一次休息?休息多长时间?
(3)第一次休息时,离家多远?
(4)11∶00到12∶00他骑了多少千米?
(5)他在9∶00~10∶00和10∶00~10∶30的平均速度分别是多少?
(6)他在哪段时间里停止前进并休息用午餐?
解 (1)最初到达离家最远的地方的时间是12时,离家30 千米.
(2)10∶30开始第一次休息,休息了半小时.
(3)第一次休息时,离家17 千米.
(4)11∶00至12∶00他骑了13 千米.
(5)9∶00~10∶00的平均速度是10 千米/时;10∶00~10∶30的平均速度是14 千米/时.
(6)从12时到13时停止前进,并休息用午餐较为符合实际情形.
课件34张PPT。3.1.2 函数的表示法(二)第三章 3.1 函数的概念及其表示学习目标XUEXIMUBIAO1.会用解析法及图象法表示分段函数.
2.给出分段函数,能研究有关性质.NEIRONGSUOYIN内容索引知识梳理题型探究随堂演练1知识梳理PART ONE知识点 分段函数1.一般地,分段函数就是在函数定义域内,对于自变量x的不同取值范围,有着不同的 的函数.
2.分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的 ;各段函数的定义域的交集是 .
3.作分段函数图象时,应分别作出每一段的图象.对应关系并集空集思考辨析 判断正误SI KAO BIAN XI PAN DUAN ZHENG WU1.函数f(x)= 是分段函数.( )√2.分段函数尽管在定义域不同的部分有不同的对应关系,但它们是一个函数.( )
3.分段函数各段上的函数值集合的交集为?.( )
4.分段函数的定义域是各段上自变量取值的并集.( )√×√2题型探究PART TWO一、分段函数求值知f(-5)=-5+1=-4,延伸探究
1.本例条件不变,若f(a)=3,求实数a的值.解 ①当a≤-2时,f(a)=a+1,所以a+1=3,
所以a=2>-2不合题意,舍去.
②当-2
即a2+2a-3=0.
所以(a-1)(a+3)=0,
所以a=1或a=-3.
因为1∈(-2,2),-3?(-2,2),
所以a=1符合题意.
③当a≥2时,2a-1=3,所以a=2符合题意.
综合①②③,当f(a)=3时,a=1或a=2.2.本例条件不变,若f(x)>3,求x的取值范围.解 ①当x≤-2时,x+1>3得x>2,
又x≤-2,所以x∈?.
②当-2
3得x>1或x<-3,
又-2
③当x≥2时,2x-1>3,得x>2,
又x≥2,所以x>2,
综上有x的取值范围是1
2.(1)求分段函数的函数值的方法
①确定要求值的自变量属于哪一段区间.
②代入该段的解析式求值,当出现f(f(x0))的形式时,应从内到外依次求值.
(2)求某条件下自变量的值的方法.
先对x的取值范围分类讨论,然后代入不同的解析式,解方程求解,注意需检验所求的值是否在所讨论的区间内.二、分段函数的图象及应用例2 已知函数f(x)=-x2+2,g(x)=x,令φ(x)=min{f(x),g(x)}(即f(x)和g(x)中的较小者).
(1)分别用图象法和解析式表示φ(x);解 在同一个坐标系中画出函数f(x),g(x)的图象如图①.
由图①中函数取值的情况,结合函数φ(x)的定义,
可得函数φ(x)的图象如图②.
令-x2+2=x得x=-2或x=1.
结合图②,得出φ(x)的解析式为(2)求函数φ(x)的定义域,值域.解 由图②知,φ(x)的定义域为R,φ(1)=1,
∴φ(x)的值域为(-∞,1].分段函数图象的画法
(1)作分段函数的图象时,分别作出各段的图象,在作第一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.
(2)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.解析 当x=-1时,y=0,即图象过点(-1,0),D错;
当x=0时,y=1,即图象过点(0,1),C错;
当x=1时,y=2,即图象过点(1,2),B错.
故选A.√(2)已知函数f(x)的图象如图所示,则f(x)的解析式是_______________________.解析 由图可知,图象由两条线段(其中一条不含右端点)组成,
当-1≤x<0时,设f(x)=ax+b(a≠0),
将(-1,0),(0,1)代入解析式,当0≤x≤1时,设f(x)=kx(k≠0),
将(1,-1)代入,则k=-1.∴f(x)=-x.三、分段函数的实际应用例3 A,B两地相距150公里,某汽车以每小时50公里的速度从A地到B地,在B地停留2小时之后,又以每小时60公里的速度返回A地.写出该车离A地的距离s(公里)关于时间t(小时)的函数关系,并画出函数图象.解 (1)汽车从A地到B地,速度为50公里/小时,(2)汽车在B地停留2小时,则有s=150.
(3)汽车从B地返回A地,速度为60公里/小时,
则有s=150-60(t-5)=450-60t,函数图象如图所示.分段函数模型应用的关键是确定分段的各分界点,即明确自变量的取值区间,对每一个区间进行分类讨论,从而写出相应的函数解析式.3随堂演练PART THREE123451.函数f(x)=|x-1|的图象是√画出此分段函数的图象,故选B.
方法二 由f(-1)=2,知图象过点(-1,2),排除A,C,D,故选B.12345A.1 B.0 C.2 D.-1√13452A.-4或-2 B.-4或2
C.-2或4 D.-2或2√13452(-1,1)(-1,1)解析 定义域为各段的并集,即(0,1)∪{0}∪(-1,0)=(-1,1).
值域为各段的并集(0,1)∪{0}∪(-1,0)=(-1,1).13452解析 因为8<10,所以f(8)=f(8+5)=f(13),
又13>10,所以f(13)=13-3=10,所以f(8)=10.10课堂小结KE TANG XIAO JIE1.知识清单:
(1)分段函数的概念及求值.
(2)分段函数的图象.
2.方法归纳:分类讨论、数形结合法.
3.常见误区:
(1)分段函数是一个函数,而不是几个函数.
(2)作分段函数图象时要注意衔接点的虚实.本课结束
点击下载
同课章节目录
第一章 集合与常用逻辑用语
1.1 集合的概念
1.2 集合间的基本关系
1.3 集合的基本运算
1.4 充分条件与必要条件
1.5 全称量词与存在量词
第二章 一元二次函数、方程和不等式
2.1 等式性质与不等式性质
2.2 基本不等式
2.3 二次函数与一元二次方程、不等式
第三章 函数概念与性质
3.1 函数的概念及其表示
3.2 函数的基本性质
3.3 幂函数
3.4 函数的应用(一)
第四章 指数函数与对数函数
4.1 指数
4.2 指数函数
4.3 对数
4.4 对数函数
4.5 函数的应用(二)
第五章 三角函数
5.1 任意角和弧度制
5.2 三角函数的概念
5.3 诱导公式
5.4 三角函数的图象与性质
5.5 三角恒等变换
5.6 函数 y=Asin( ωx + φ)
5.7 三角函数的应用
点击下载
VIP下载