四年级上册数学教案-4.2 加法交换律和乘法交换律北师大版

文档属性

名称 四年级上册数学教案-4.2 加法交换律和乘法交换律北师大版
格式 zip
文件大小 16.9KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2019-12-09 15:48:37

图片预览

文档简介

《加法交换律和乘法交换律》教学设计
西城小学 曹大伟
教材分析:
本课学习“加法交换律和乘法交换律”的内容,让学生从具体的计算中发现两个算式中的数字相同,位置不同,但计算结果却相同。通过不断猜测验证,从一般现象上升到普遍现象,从而总结出加法交换律和乘法交换律;接着让学生尝试用字母来表示这样两个规律;最后让学生用生活中的实例来解释规律。这样的安排不但让学生经历了规律的发现过程,还进一步加深了学生对规律的理解和感悟。教学中教师要注重知识的顺利过渡,让学生在对旧知的计算练习中自觉地观察发现算式的特点,给学生充分的时间和空间去自由表达自己的发现,教师只要酌情因势利导,不失时机地给予学生适度的启发和点拨,帮助学生把这些零散的感性认识上升为理性认识。
教学目标:
1、经历教法交换律和乘法交换律的探索过程,会用字母表示加法交换律和乘法交换律,培养发现问题和提出问题的能力,积累数学活动经验。?
2、通过列举生活实例解释加法交换律和乘法交换律的过程,认识运算律丰富的现实背景,了解加法交换律和乘法交换律的用途,发现应用意识。
3、在探索与发现的过程中,激发勇于尝试的精神,增强学习数学的兴趣和自信心。培养学生团结协作的策略和意识。
教学重点:经历观察、归纳、猜想、验证的过程,培养学生的观察、概括能力,渗透归纳猜想的数学思想方法。
教学难点:归纳猜想的数学思想方法渗透。
教学准备 :多媒体展台、课件等
教学过程 :
一、故事导入:
1、视频播放朝三暮四的故事,组织学生谈听完故事后的感想。
2、引入新课:今天,我们就抓住数学中的变与不变来探究规律——加法交换律和乘法交换律。
(设计意图:采用讲故事的方法,让学生感受到数学在我们的生活中无处不在,让学生从直接的情境中发现运算律,培养学生的分析能力。)
?二、新授:
1、加法交换律。
(1)引导学生将故事中猴子一天吃的桃子数列成算式。
3+4=7 4+3=7
3+4=4+3
(设计意图:让生初步感知数学规律)
(2)师:观察这组式子,你还能再写出几组这样的式子吗?
生试着仿写算式,指生板演。(师要引导学生列出整数、小数、分数等的算式)
师:“请同学们仔细观察这几组算式,它们有哪些相同点和不同点?”
生独立思考后小组讨论,指生汇报:
相同点:两个加数相同;和相等
不同点:两个加数的位置交换了
(设计意图:通过仿写、观察对比,发现相同点和不同点,有利于规律的发现)
师:“在加法中,我们给这样的规律起个名字叫做加法交换律。谁能用自己的语言表达一下这个规律?”
生用自己的语言汇报,师小结:交换加数的位置,和不变,这就是加法交换律。
(3)你能用生活中的事例解释你的发现吗?
出示课本情境图。从电影院到学校的距离和从学校到电影院的距离有什么关系?你是怎么计算的?
指生列式:42+35=35+42
“这是运用了什么规律?”——“加法交换律”
(4)让学生用自己喜欢的方式表示加法交换律(启发学生用符号或字母)? ?
例:◆+●=●+◆? ?? ?? ?
甲数+乙数=乙数+甲数
a+b=b+a??(这里的a、b可以是哪些数? )
小结:加法交换律用字母表示:a+b=b+a
(5)竖式计算 358+276??
师:运用加法交换律,我们还可以验算加法的计算结果是否正确。 ? ???
358 276
+276 ?? ?? ???验算:? ?+358
634 634
小结:验算时,可以将两个加数交换位置后再加一遍。也可以用原来的竖式,把每一位上的数从下往上再一遍。
(设计意图:生发现总结加法交换律后应用规律、解释规律,有助于学生更好的掌握知识,养成科学的探究习惯)
2、乘法交换律
(1)“在乘法中是不是也有类似加法交换律的运算定律呢?”
出示算式
3×5=15 5×3=15
3×5=5×3
生先独立思考,再小组合作交流自己的想法。(师引导学生根据探究加法结合律的过程进行探究)
小组成员集体汇报探究成果
师小结:两个数相乘,交换两个因数的位置,它们的积是相等的。
乘法结合律:a×b=b×a
(2)你能用生活中的事例解释你的发现吗?
出示课本情境图。指生列式:6×5=5×6并解释算式
(3)解释5×107=535
107
× 5
535
(设计意图:通过加法结合律的探究,学生已经基本体会到探究规律的步骤及过程,在学习乘法结合律时给予学生充分的自由自主探究,加深了学生对规律的理解和感悟)
三、巩固练习
练一练T1~T3
(设计意图:通过练习进一步深化学生对规律的认识,同时使学生感受到数学学习所带来的快乐。)
四、板书设计
加法交换律和乘法交换律
a+b=b+a a×b=b×a
3 + 4 = 7 3×5=15
4 + 3 = 7 5×3=15
3 + 4 = 4 + 3 3×5=5×3