4.5.3 函数模型的应用
课标要求
素养要求
1.会利用已知函数模型解决实际问题.
2.能建立函数模型解决实际问题.
通过本节内容的学习,使学生认识函数模型的作用,提升学生数学建模、数据分析等素养.
教材知识探究
爱因斯坦说过,复利的威力比原子弹还可怕.若每月坚持投资100元,40年之后将成为百万富翁.也就是说随着变量的增长,指数函数值的增长是非常迅速的,可以根据这一特点来进行资金的管理.例如,按复利计算利率的一种储蓄,本金为a元,每期的利率为r,设本利和为y,存期为x,那么要知道存一定期限之后所得的本利和,就要写出本利和y随着存期x变化的函数式.假设存入的本金为
1 000元,每期的利率为2.25%.
问题 五期后的本利和是多少?
提示 解决这一问题,首先要建立一个指数函数关系式,即y=a(1+r)x,将相应的数据代入该关系式就可得到五年期的本利和.
常见的函数模型
常用函数模型
(1)一次函数模型
y=kx+b(k,b为常数,k≠0)
(2)二次函数模型
y=ax2+bx+c(a,b,c为常数,a≠0)
(3)指数函数模型
y=bax+c(a,b,c为常数,b≠0,a>0且a≠1)
(4)对数函数模型
y=mlogax+n(m,a,n为常数,m≠0,a>0且a≠1)
(5)幂函数模型
y=axn+b(a,b为常数,a≠0)
(6)分段函数模型
y=
教材拓展补遗
[微判断]
1.实际问题中两个变量之间一定有确定的函数关系.(×)
提示 两个变量之间可以有关系,但不一定是确定的函数关系.
2.函数模型中,要求定义域只需使函数式有意义.(×)
提示 函数模型中定义域必须满足实际意义.
3.用函数模型预测的结果和实际结果必须相等,否则函数模型就无存在意义了.(×)
提示 拟合函数预测的结果近似的符合实际结果即可.
[微训练]
1.某商场在销售空调旺季的4天内的利润如下表所示.
时间
1
2
3
4
利润
(千元)
2
3.98
8.01
15.99
现构建一个销售这种空调的函数模型,应是下列函数中的( )
A.y=log2x B.y=2x
C.y=x2 D.y=2x
解析 逐个检验可得答案为B.
答案 B
2.2014年我国人口总数约为14亿,如果人口的自然年增长率控制在1.25%,则预计________年我国人口将首次超过20亿(lg 2≈0.301 0,lg 3≈0.477 1,lg 7≈0.845 1).
解析 设x年我国人口将超过20亿,由已知条件:14(1+1.25%)x-2 014>20,x-2 014>=≈28.7,则x>2 042.7,即x=2 043.
答案 2 043
[微思考]
1.斜率k的取值是如何影响一次函数的图象和性质的?
提示 k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.
2.在幂函数模型的解析式中,n的正负如何影响函数的单调性?
提示 当x>0,n>0时,函数的图象在第一象限内是上升的,在(0,+∞)上为增函数;当x>0,n<0时,函数的图象在第一象限内是下降的,在(0,+∞)上为减函数.
题型一 一次函数、二次函数、分段函数模型
【例1】 某市“网约车”的现行计价标准是:路程在2 km以内(含2 km)按起步价8元收取,超过2 km后的路程按1.9元/km收取,但超过10 km后的路程需加收50%的返空费(即单价为1.9×(1+50%)=2.85 元/km).
(1)将某乘客搭乘一次“网约车”的费用f(x)(单位:元)表示为行程x(0(2)某乘客的行程为16 km,他准备先乘一辆“网约车”行驶8 km后,再换乘另一辆“网约车”完成余下行程,请问:他这样做是否比只乘一辆“网约车”完成全部行程更省钱?请说明理由.
解 (1)由题意得,车费f(x)关于路程x的函数为
f(x)=
=
(2)只乘一辆车的车费为
f(16)=2.85×16-5.3=40.3(元),
换乘2辆车的车费为2f(8)=2(4.2+1.9×8)=38.8(元).
因此40.3>38.8,
所以该乘客换乘比只乘一辆车更省钱.
规律方法 1.利用二次函数求最值的方法及注意点
(1)方法:根据实际问题建立函数模型解析式后,可利用配方法、判别式法、换元法及利用函数的单调性等方法求最值,从而解决实际问题中的利润最大、用料最省等最值问题.
(2)注意:取得最值时的自变量与实际意义是否相符.
2.应用分段函数时的三个注意点
(1)分段函数的“段”一定要分得合理,不重不漏.
(2)分段函数的定义域为对应每一段自变量取值范围的并集.
(3)分段函数的值域求法为:逐段求函数值的范围,最后比较再下结论.
【训练1】 某车间生产一种仪器的固定成本为10 000元,每生产一台该仪器需要增加投入100元,已知总收入满足函数:
H(x)=
其中x是仪器的月产量.
(1)将利润表示为月产量的函数(用f(x)表示);
(2)当月产量为何值时,车间所获利润最大?最大利润为多少元?(总收入=总成本+利润)
解 (1)设每月产量为x台,则总成本为t=10 000+100x.又f(x)=H(x)-t,
∴f(x)=
(2)当0≤x≤200时,f(x)=-(x-150)2+12 500,
所以当x=150时,有最大值12 500;
当x>200时,f(x)=30 000-100x是减函数,
f(x)<30 000-100×200<12 500.
所以当x=150时,f(x)取最大值,最大值为12 500.
所以每月生产150台仪器时,利润最大,最大利润为12 500元.
题型二 指数函数、对数函数模型
【例2】 大西洋鲑鱼每年都要逆流而上,游回产地产卵,经研究发现鲑鱼的游速可以表示为函数v=log3,单位是m/s,θ是表示鱼的耗氧量的单位数.
(1)当一条鲑鱼的耗氧量是900个单位时①,它的游速是多少?
(2)某条鲑鱼想把游速提高1 m/s②,那么它的耗氧量的单位数是原来的多少倍?
①将函数式中的θ换为900求解v;②游速提高1 m/s的意思是函数值的差值为1.
解 (1)由v=log3可知,
当θ=900时,v=log3=log39=1(m/s).
所以当一条鲑鱼的耗氧量是900个单位时,它的游速是1 m/s.
(2)由v2-v1=1,即log3-log3=1,得=9.所以耗氧量的单位数为原来的9倍.
规律方法 指数型、对数型函数问题的类型及解法
(1)指数函数模型:y=max(a>0且a≠1,m≠0),在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题都可用指数型函数模型来表示.
(2)对数函数模型:y=mlogax+c(m≠0,a>0且a≠1),对数函数模型一般给出函数关系式,然后利用对数的运算求解.
(3)指数型、对数型函数应用题的解题思路:①依题意,找出或建立数学模型,
②依实际情况确立解析式中的参数,③依题设数据解决数学问题,④得出结论.
【训练2】 一片森林原来面积为a,计划每年砍伐一些树,且使森林面积每年比上一年减少p%,10年后森林面积变为.为保护生态环境,所剩森林面积至少要为原面积的.已知到今年为止,森林面积为a.
(1)求p%的值;
(2)到今年为止,该森林已砍伐了多少年?
(3)今后最多还能砍伐多少年?
解 (1)由题意得a(1-p%)10=,
即(1-p%)10=,解得p%=1-.
(2)设经过m年森林面积为a,
则a(1-p%)m=a,即=,得=,解得m=5.故到今年为止,已砍伐了5年.
(3)设从今年开始,n年后森林面积为a·(1-p%)n,
令a(1-p%)n≥a,即(1-p%)n≥,
≥,得≤,解得n≤15,
故今后最多还能砍伐15年.
题型三 建立拟合函数模型解决实际问题
解决此类问题通常要绘制散点图,由图象的结构特征去判断选择所要拟合的函数类型
【例3】 为了估计山上积雪融化后对下游灌溉的影响,在山上建立了一个观察站,测量最大积雪深度x与当年灌溉面积y.现有连续10年的实测资料,如表所示.
年序
最大积雪深度x(cm)
灌溉面积y(公顷)
1
15.2
28.6
2
10.4
21.1
3
21.2
40.5
4
18.6
36.6
5
26.4
49.8
6
23.4
45.0
7
13.5
29.2
8
16.7
34.1
9
24.0
45.8
10
19.1
36.9
(1)描点画出灌溉面积随积雪深度变化的图象;
(2)建立一个能基本反映灌溉面积变化的函数模型,并画出图象;
(3)根据所建立的函数模型,估计若今年最大积雪深度为25 cm,则可以灌溉土地多少公顷?
解 (1)描点、作图,如图(甲)所示:
(2)从图(甲)中可以看到,数据点大致落在一条直线附近,由此,我们假设灌溉面积y与最大积雪深度x满足一次函数模型y=a+bx(a,b为常数且b≠0).取其中的两组数据(10.4,21.1),(24.0,45.8),代入y=a+bx,得用计算器可得a≈2.2,b≈1.8.这样,得到一个函数模型:y=2.2+1.8x,作出函数图象如图(乙),可以发现,这个函数模型与已知数据的拟合程度较好,这说明它能较好地反映最大积雪深度与灌溉面积的关系.
(3)由(2)得到的函数模型为y=2.2+1.8x,则当x=25时,y=2.2+1.8×25=47.2,即当最大积雪深度为25 cm时,可以灌溉土地约为47.2公顷.
规律方法 建立拟合函数与预测的基本步骤
【训练3】 某企业常年生产一种出口产品,近年来,该产品的产量平稳增长.记2013年为第1年,且前4年中,第x年与年产量f(x)(万件)之间的关系如下表所示:
x
1
2
3
4
f(x)
4.00
5.58
7.00
8.44
若f(x)近似符合以下三种函数模型之一:f(x)=ax+b,f(x)=2x+a,
f(x)=logx+a.
找出你认为最适合的函数模型,并说明理由,然后选取2013年和2015年的数据求出相应的解析式.
解 最适合的函数模型是f(x)=ax+b,理由如下.
若模型为f(x)=2x+a,则由f(1)=21+a=4,
得a=2,即f(x)=2x+2,
此时f(2)=6,f(3)=10,f(4)=18,与已知相差太大,不符合.
若模型为f(x)=logx+a,
则f(x)是减函数,与已知不符合.
由已知得解得
所以f(x)=x+,x∈N.
一、素养落地
1.通过利用已知函数模型解决实际问题,提升数学建模素养,通过建立函数模型解决实际问题提升数据分析素养.
2.函数模型的应用实例主要包括三个方面:
(1)利用给定的函数模型解决实际问题;
(2)建立确定性的函数模型解决实际问题;
(3)建立拟合函数模型解决实际问题.
3.在引入自变量建立函数解决函数应用题时,一是要注意自变量的取值范围,二是要检验所得结果,必要时运用估算和近似计算,以使结果符合实际问题的要求.
二、素养训练
1.一辆汽车在某段路程中的行驶路程s关于时间t变化的图象如图所示,那么图象所对应的函数模型是( )
A.分段函数 B.二次函数
C.指数函数 D.对数函数
答案 A
2.若镭经过100年后剩留原来质量的95.76%,设质量为1的镭经过x年后剩留量为y,则x,y的函数关系是( )
A.y=0.957 6 B.y=(0.957 6)100x
C.y= D.y=1-0.042 4
答案 A
3.某种植物生长发育的数量y与时间x的关系如下表:
x
1
2
3
…
y
1
3
8
…
则下面的函数关系式中,拟合效果最好的是( )
A.y=2x-1 B.y=x2-1
C.y=2x-1 D.y=1.5x2-2.5x+2
解析 将数值代入各选项中,三个点均与D项吻合,故选D.
答案 D
4.某商人将彩电先按原价提高40%,然后在广告上写上“大酬宾,八折优惠”,结果是每台彩电比原价多赚了270元,则每台彩电的原价为________元.
解析 设彩电的原价为a元,
∴a(1+0.4)·80%-a=270,
∴0.12a=270,解得a=2 250.
∴每台彩电的原价为2 250元.
答案 2 250
5.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=-48x+8 000,已知此生产线年产量最大为210吨.若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?
解 设可获得总利润为R(x)万元,
则R(x)=40x-y=40x-+48x-8 000=-+88x-8 000
=-(x-220)2+1 680(0≤x≤210).
∵R(x)在[0,210]上是增函数,∴当x=210时,
R(x)max=-(210-220)2+1 680=1 660(万元).
∴年产量为210吨时,可获得最大利润1 660万元.
基础达标
一、选择题
1.下表是函数值y随自变量x变化的一组数据,它最可能的函数模型是( )
x
4
5
6
7
8
9
10
y
15
17
19
21
23
25
27
A.一次函数模型 B.幂函数模型
C.指数函数模型 D.对数函数模型
解析 根据已知数据可知,自变量每增加1函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.
答案 A
2.某研究小组在一项实验中获得一组关于y,t的数据,将其整理得到如图所示的图形.下列函数中,最能近似刻画y与t之间关系的是( )
A.y=2t B.y=2t2
C.y=t3 D.y=log2t
解析 由题图知,该函数可能是y=log2t.故选D.
答案 D
3.某杂志能以每本1.20元的价格销售12万本,假设定价每降低0.1元,销售量就增加4万本,要使总销售收入不低于20万元,则杂志的价格最低为( )
A.0.5元 B.0.8元
C.1元 D.1.1元
解析 设杂志的价格降低了x个0.1元,则此时价格为(1.20-x×0.1)元,卖出(12+4x)万本,设总销售收入为y万元,则y=(1.20-0.1x)(12+4x)=-0.4x2+3.6x+14.4(x∈N*),要使y≥20,即x2-9x+14≤0,解得2≤x≤7,当x=7时,价格最低,为1.20-0.7=0.5(元).
答案 A
4.某新款电视投放市场后第一个月销售了100台,第二个月销售了200台,第三个月销售了400台,第四个月销售了790台,则下列函数模型中能较好地反映销量y与投放市场的月数x(1≤x≤4,x∈N*)之间关系的是( )
A.y=100x B.y=50x2-50x+100
C.y=50×2x D.y=100x
解析 将题目中的数据代入各函数中,易知指数型函数能较好地与题中的数据相对应.
答案 C
5.某公司为激励创新,计划逐年加大研发奖金投入.若该公司2015年全年投入研发奖金130万元.在此基础上,每年投入的研发奖金比上一年增长12%,则该公司全年投入的研发奖金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( )
A.2018年 B.2019年
C.2020年 D.2021年
解析 设第x年的研发奖金为200万元,则由题意可得130×(1+12%)x=200,
∴1.12x=,∴x=log1.12=log1.1220-log1.1213
=-=
≈=3.8.
即3年后不到200万元,第4年超过200万元,即2019年超过200万元.
答案 B
二、填空题
6.某工厂
8年来某种产品的总产量C与时间t(年)的函数关系如图所示,给出下列四种说法:①前三年中产量增长的速度越来越快;②前三年中产量增长的速度越来越慢;
③第三年后这种产品停止生产;④第三年后产量保持不变.其中说法正确是________(填序号).
解析 由t∈[0,3]的图象,联想到幂函数y=xα(0<α<1),反映了C随时间的变化而逐渐增长但速度越来越慢,由t∈[3,8]的图象可知,总产量C没有变化,即第三年后停止生产.
答案 ②③
7.在不考虑空气阻力的情况下,火箭的最大速度v m/s和燃料质量M kg、火箭(除燃料外)质量m kg的关系是v=2 000ln,则当燃料质量是火箭质量的________倍时,火箭的最大速度可达12 km/s.
解析 由题意2 000ln=12 000.
∴ln=6,从而=e6-1.
答案 e6-1
8.某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=
ekx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0 ℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是________小时.
解析 由已知条件得192=eb,∴b=ln 192.又∵48=e22k+b=e22k+ln 192=192e22k=192(e11k)2,∴e11k===.设该食品在33 ℃的保鲜时间是t小时,则t=e33k+ln 192=192e33k=192(e11k)3=192×=24.
答案 24
三、解答题
9.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T0,经过一定时间t后的温度是T,则T-Ta=(T0-Ta)·,其中Ta表示环境温度,h称为半衰期.现有一杯用88 ℃热水冲的速溶咖啡,放在24 ℃的房间中,如果咖啡降温到40 ℃需要20 min,那么降温到35 ℃时,需要多少时间?(参考数据:lg11≈1.04,lg 2≈0.30)
解 由题意知40-24=(88-24)·,
即=,解得h=10.
故T-24=(88-24)·.
当T=35时,代入上式,得
35-24=(88-24)·,即=.
两边取对数,求得t≈25.
因此,约需要25 min,可降温到35 ℃.
10.某公司试销某种“上海世博会”纪念品,每件按30元销售,可获利50%,设每件纪念品的成本为a元.
(1)试求a的值;
(2)公司在试销过程中进行了市场调查,发现销售量y(件)与每件销售价x(元)满足关系y=-10x+800.设每天销售利润为W(元),求每天销售利润W(元)与每件销售价x(元)之间的函数解析式;当每件售价为多少时,每天获得的利润最大?最大利润是多少?
解 (1)∵按30元销售,可获利50%,∴a(1+50%)=30,解得a=20.
(2)∵销售量y(件)与每件销售价x(元)满足关系y=-10x+800,则每天销售利润W(元)与每件销售价x(元)满足W=(-10x+800)(x-20)=-10x2+1 000x-
16 000
=-10(x-50)2+9 000,故当x=50时,W取最大值9 000,
即每件销售价为50元时,每天获得的利润最大,最大利润是9 000元.
能力提升
11.某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励.记奖金为y(单位:万元),销售利润为x(单位:万元).
(1)写出奖金y关于销售利润x的关系式;
(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?
解 (1)由题意,当销售利润不超过8万元时,按销售利润的15%进行奖励,当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励,∴当0≤x≤8时,y=0.15x;
当x>8时,y=1.2+log5(2x-15).
∴奖金y关于销售利润x的关系式为y=
(2)由题意,1.2+log5(2x-15)=3.2,解得x=20,
故小江的销售利润是20万元.
12.某地区为响应上级号召,在2015年初,新建了一批有200万平方米的廉价住房,供困难的城市居民居住.由于下半年受物价的影响,根据本地区的实际情况,估计今后住房的年平均增长率只能达到5%.
(1)经过x年后,该地区的廉价住房为y万平方米,求y=f(x)的表达式,并求此函数的定义域.
(2)作出函数y=f(x)的图象,并结合图象求:经过多少年后,该地区的廉价住房能达到300万平方米?
解 (1)经过1年后,廉价住房面积为200+200×5%=200(1+5%);经过2年后为200(1+5%)2;
…
经过x年后,廉价住房面积为200(1+5%)x,
所以y=f(x)=200(1+5%)x(x∈N*).
(2)作函数y=f(x)=200(1+5%)x(x≥0,x∈N*)的图象,如图所示.
作直线y=300,与函数y=200(1+5%)x的图象交于A点,则A(x0,300),A点的横坐标x0的值就是函数值y=300时所经过的时间x的值.因为8课件34张PPT。4.5.3 函数模型的应用教材知识探究爱因斯坦说过,复利的威力比原子弹还可怕.若每月坚持投资100元,40年之后将成为百万富翁.也就是说随着变量的增长,指数函数值的增长是非常迅速的,可以根据这一特点来进行资金的管理.例如,按复利计算利率的一种储蓄,本金为a元,每期的利率为r,设本利和为y,存期为x,那么要知道存一定期限之后所得的本利和,就要写出本利和y随着存期x变化的函数式.假设存入的本金为1 000元,每期的利率为2.25%.问题 五期后的本利和是多少?
提示 解决这一问题,首先要建立一个指数函数关系式,即y=a(1+r)x,将相应的数据代入该关系式就可得到五年期的本利和.常见的函数模型教材拓展补遗
[微判断]
1.实际问题中两个变量之间一定有确定的函数关系.( )
提示 两个变量之间可以有关系,但不一定是确定的函数关系.
2.函数模型中,要求定义域只需使函数式有意义.( )
提示 函数模型中定义域必须满足实际意义.
3.用函数模型预测的结果和实际结果必须相等,否则函数模型就无存在意义了.
( )
提示 拟合函数预测的结果近似的符合实际结果即可.×××[微训练]
1.某商场在销售空调旺季的4天内的利润如下表所示.现构建一个销售这种空调的函数模型,应是下列函数中的( )
A.y=log2x B.y=2x
C.y=x2 D.y=2x
解析 逐个检验可得答案为B.
答案 B2.2014年我国人口总数约为14亿,如果人口的自然年增长率控制在1.25%,则预计________年我国人口将首次超过20亿(lg 2≈0.301 0,lg 3≈0.477 1,lg 7≈0.845 1).答案 2 043[微思考]
1.斜率k的取值是如何影响一次函数的图象和性质的?
提示 k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.2.在幂函数模型的解析式中,n的正负如何影响函数的单调性?
提示 当x>0,n>0时,函数的图象在第一象限内是上升的,在(0,+∞)上为增函数;当x>0,n<0时,函数的图象在第一象限内是下降的,在(0,+∞)上为减函数.题型一 一次函数、二次函数、分段函数模型
【例1】 某市“网约车”的现行计价标准是:路程在2 km以内(含2 km)按起步价8元收取,超过2 km后的路程按1.9元/km收取,但超过10 km后的路程需加收50%的返空费(即单价为1.9×(1+50%)=2.85 元/km).
(1)将某乘客搭乘一次“网约车”的费用f(x)(单位:元)表示为行程x(0 (2)某乘客的行程为16 km,他准备先乘一辆“网约车”行驶8 km后,再换乘另一辆“网约车”完成余下行程,请问:他这样做是否比只乘一辆“网约车”完成全部行程更省钱?请说明理由.解 (1)由题意得,车费f(x)关于路程x的函数为(2)只乘一辆车的车费为
f(16)=2.85×16-5.3=40.3(元),
换乘2辆车的车费为2f(8)=2(4.2+1.9×8)=38.8(元).
因此40.3>38.8,
所以该乘客换乘比只乘一辆车更省钱.规律方法 1.利用二次函数求最值的方法及注意点
(1)方法:根据实际问题建立函数模型解析式后,可利用配方法、判别式法、换元法及利用函数的单调性等方法求最值,从而解决实际问题中的利润最大、用料最省等最值问题.
(2)注意:取得最值时的自变量与实际意义是否相符.
2.应用分段函数时的三个注意点
(1)分段函数的“段”一定要分得合理,不重不漏.
(2)分段函数的定义域为对应每一段自变量取值范围的并集.
(3)分段函数的值域求法为:逐段求函数值的范围,最后比较再下结论.解 (1)设每月产量为x台,则总成本为t=10 000+100x.又f(x)=H(x)-t,(2)当0≤x≤200时,f(x)=-(x-150)2+12 500,
所以当x=150时,有最大值12 500;
当x>200时,f(x)=30 000-100x是减函数,
f(x)<30 000-100×200<12 500.
所以当x=150时,f(x)取最大值,最大值为12 500.
所以每月生产150台仪器时,利润最大,最大利润为12 500元.耗氧量是900个单位时①,(2)某条鲑鱼想把游速提高1 m/s②,那么它的耗氧量的单位数是原来的多少倍?它的游速是多少?①将函数式中的θ换为900求解v;②游速提高1 m/s的意思是函数值的差值为1.所以当一条鲑鱼的耗氧量是900个单位时,它的游速是1 m/s.规律方法 指数型、对数型函数问题的类型及解法
(1)指数函数模型:y=max(a>0且a≠1,m≠0),在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题都可用指数型函数模型来表示.
(2)对数函数模型:y=mlogax+c(m≠0,a>0且a≠1),对数函数模型一般给出函数关系式,然后利用对数的运算求解.
(3)指数型、对数型函数应用题的解题思路:①依题意,找出或建立数学模型,
②依实际情况确立解析式中的参数,③依题设数据解决数学问题,④得出结论.故今后最多还能砍伐15年.题型三 建立拟合函数模型解决实际问题【例3】 为了估计山上积雪融化后对下游灌溉的影响,在山上建立了一个观察站,测量最大积雪深度x与当年灌溉面积y.现有连续10年的实测资料,如表所示.解决此类问题通常要绘制散点图,由图象的结构特征去判断选择所要拟合的函数类型(1)描点画出灌溉面积随积雪深度变化的图象;
(2)建立一个能基本反映灌溉面积变化的函数模型,并画出图象;
(3)根据所建立的函数模型,估计若今年最大积雪深度为25 cm,则可以灌溉土地多少公顷?解 (1)描点、作图,如图(甲)所示:(3)由(2)得到的函数模型为y=2.2+1.8x,则当x=25时,y=2.2+1.8×25=47.2,即当最大积雪深度为25 cm时,可以灌溉土地约为47.2公顷.规律方法 建立拟合函数与预测的基本步骤【训练3】 某企业常年生产一种出口产品,近年来,该产品的产量平稳增长.记2013年为第1年,且前4年中,第x年与年产量f(x)(万件)之间的关系如下表所示:解 最适合的函数模型是f(x)=ax+b,理由如下.
若模型为f(x)=2x+a,则由f(1)=21+a=4,
得a=2,即f(x)=2x+2,
此时f(2)=6,f(3)=10,f(4)=18,与已知相差太大,不符合.则f(x)是减函数,与已知不符合.一、素养落地
1.通过利用已知函数模型解决实际问题,提升数学建模素养,通过建立函数模型解决实际问题提升数据分析素养.
2.函数模型的应用实例主要包括三个方面:
(1)利用给定的函数模型解决实际问题;
(2)建立确定性的函数模型解决实际问题;
(3)建立拟合函数模型解决实际问题.
3.在引入自变量建立函数解决函数应用题时,一是要注意自变量的取值范围,二是要检验所得结果,必要时运用估算和近似计算,以使结果符合实际问题的要求.二、素养训练
1.一辆汽车在某段路程中的行驶路程s关于时间t变化的图象如图所示,那么图象所对应的函数模型是( )
A.分段函数 B.二次函数
C.指数函数 D.对数函数
答案 A答案 A3.某种植物生长发育的数量y与时间x的关系如下表:则下面的函数关系式中,拟合效果最好的是( )
A.y=2x-1 B.y=x2-1
C.y=2x-1 D.y=1.5x2-2.5x+2
解析 将数值代入各选项中,三个点均与D项吻合,故选D.
答案 D4.某商人将彩电先按原价提高40%,然后在广告上写上“大酬宾,八折优惠”,结果是每台彩电比原价多赚了270元,则每台彩电的原价为________元.
解析 设彩电的原价为a元,
∴a(1+0.4)·80%-a=270,
∴0.12a=270,解得a=2 250.
∴每台彩电的原价为2 250元.
答案 2 250解 设可获得总利润为R(x)万元,∵R(x)在[0,210]上是增函数,∴当x=210时,∴年产量为210吨时,可获得最大利润1 660万元.