第五章 三角函数
[数学文化]——了解数学文化的发展与应用
早期对于三角函数的研究可以追溯到古代.古希腊三角术的奠基人是公元前2世纪的喜帕恰斯,他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同).对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的.喜帕恰斯实际上给出了最早的三角函数数值表.然而古希腊的三角学基本是球面三角学,这与古希腊人研究的主体是天文学有关.梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理.古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法.托勒密还给出了所有0度到180度的所有整数和半整数弧度对应的正弦值.
喜帕恰斯
[读图探新]——发现现象背后的知识
伦敦眼
伦敦眼(英文名:The London Eye),全称英国航空伦敦眼(The British Airways London Eye)又称千禧之轮,坐落在伦敦泰晤士河畔,是世界第四大摩天轮,是伦敦的地标之一,也是伦敦最吸引游人的观光点之一.伦敦眼于1999年年底开幕,总高度135米(443英尺).伦敦眼共有32个乘坐舱,因舱内外用钢化玻璃打造,所以设有空调系统.每个乘坐舱可载客约25名,回转速度约为每秒0.26米,即一圈需时30分钟.
问题1:伦敦眼转一圈需用时30分钟,这就叫周期现象,那么周期为多少呢?
问题2:当游客坐伦敦眼达到最高点时,伦敦美景尽收眼底,总高度135米对应于三角函数的哪些量?
链接:(1)周期为30分钟;(2)游客达到最高点与最低点时,分别对应了三角函数的最大值与最小值.
5.1 任意角和弧度制
5.1.1 任意角
课标要求
素养要求
1.结合实例,了解角的概念的推广及其实际意义.
2.理解象限角的概念,并掌握终边相同角的含义及其表示.
在角的概念推广过程中,经历由具体到抽象,重点提升学生的数学抽象、直观想象素养.
教材知识探究
周日早晨,小明起床后,发现自己的闹钟停在5:00这一刻,他立即更换了电池,调整到了正常时间6:30,并开始正常的学习.
问题 小明在调整闹钟时间时,时针与分针各转过了多少度?
提示 时针转了-45°,分针转了-540°.
1.角的分类 注意正角、负角的旋转方向
类型
定义
图示
正角
按逆时针方向旋转形成的角
负角
按顺时针方向旋转形成的角
零角
一条射线没有作任何旋转,称它形成了一个零角
2.角的加法
(1)若两角的旋转方向相同且旋转量相等,那么就称α=β.
(2)设α、β是任意两个角,把角α的终边旋转角β,这时终边所对应的角是α+β.
(3)相反角:把射线OA绕端点O按不同方向旋转相同的量所成的两个角叫做互为相反角,角α的相反角记为-α,α-β=α+(-β).
3.象限角
如果角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是第几象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.
4.终边相同的角
所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.
教材拓展补遗
[微判断]
1.经过1小时,时针转过30°.(×)
提示 因为是顺时针旋转,所以时针转过-30°.
2.终边与始边重合的角是零角.(×)
提示 终边与始边重合的角是k·360°(k∈Z).
3.第一象限角都是锐角.(×)
提示 390°为第一象限角,但不是锐角.
4.钝角是第二象限角.(√)
5.第三象限的角一定比第一象限的角大.(×)
提示 例如-120°为第三象限角,60°为第一象限角,故错误.
[微训练]
1.-378°是第________象限角.
解析 -378°=-360°-18°,因为-18°是第四象限角,所以-378°是第四象限角.
答案 四
2.与-457°角的终边相同的角的集合是( )
A.{α|α=457°+k·360°,k∈Z}
B.{α|α=97°+k·360°,k∈Z}
C.{α|α=263°+k·360°,k∈Z}
D.{α|α=-263°+k·360°,k∈Z}
解析 由于-457°=-1×360°-97°=-2×360°+263°,故与-457°角的终边相同的角的集合是{α|α=-457°+k·360°,k∈Z}={α|α=263°+k·360°,k∈Z}.
答案 C
[微思考]
1.角的概念推广后角的范围有怎样的变化?
提示 角的概念推广后,角度的范围不限于0°~360°,而是任意的角,包括正角、负角与零角.
2.终边相同的角相等吗?相等的角终边相同吗?
提示 当角的始边相同时,若角相等,则终边相同,但若角终边相同,则不一定相等.
题型一 与任意角有关的概念辨析
【例1】 (1)下列说法中,正确的是________(填序号).
①终边落在第一象限的角为锐角;
②锐角是第一象限的角;
③第二象限的角为钝角;
④小于90°的角一定为锐角;
⑤角α与-α的终边关于x轴对称.
解析 终边落在第一象限的角不一定是锐角,如400°的角是第一象限的角,但不是锐角,故①的说法是错误的;同理第二象限的角也不一定是钝角,故③的说法也是错误的;小于90°的角不一定为锐角,比如负角,故④的说法是错误的.
答案 ②⑤
(2)如图,射线OA先绕端点O逆时针方向旋转60°到OB处,再按顺时针方向旋转820°至OC处,则β=________.
解析 ∠AOC=60°+(-820°)=-760°,β=-760°+720°=-40°.
答案 -40°
规律方法 判断角的概念问题的关键与技巧
(1)关键:正确理解象限角与锐角、直角、钝角、平角、周角等概念.
(2)技巧:判断一种说法正确需要证明,而判断一种说法错误只要举出反例即可.
【训练1】 写出图(1),(2)中的角α,β,γ的度数.
解 题干图(1)中,α=360°-30°=330°;
题干图(2)中,β=-360°+60°+150°=-150°;
γ=360°+60°+(-β)=360°+60°+150°=570°.
题型二 终边相同的角的表示及应用
在终边相同的角的表示中,k·360°可以理解为按一定方向转动的圈数,k取正整数时,按逆时针转,k取负整数时,按顺时针转,k=0时,没有转动.
【例2】 写出终边落在直线y=x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.
解 直线y=x与x轴的夹角是45°,在0°~360°范围内,终边在直线y=x上的角有两个:45°,225°.因此,终边在直线y=x上的角的集合:
S={β|β=45°+k·360°,k∈Z}∪{β|β=225°+k·360°,k∈Z}
={β|β=45°+2k·180°,k∈Z}∪{β|β=45°+(2k+1)·180°,k∈Z}={β|β=45°+n·180°,n∈Z}.
∴S中适合-360°≤β<720°的元素是:
45°-2×180°=-315°;45°-1×180°=-135°;
45°+0×180°=45°;45°+1×180°=225°;
45°+2×180°=405°;45°+3×180°=585°.
规律方法 解答本题关键是找到0°~360°范围内,终边落在直线y=x的角:45°,225°,再利用终边相同的角的关系写出符合条件的所有角的集合,如果集合能化简的还要化成最简.
【训练2】 写出终边落在x轴上的角的集合S.
解 S={α|α=k·360°,k∈Z}∪{α|α=k·360°+180°,k∈Z}={α|α=2k·180°,k∈Z}∪{α|α=(2k+1)·180°,k∈Z}={α|α=n·180°,n∈Z}.
题型三 象限角和区间(域)角的表示
应先找到0°~360°范围内与其终边相同的角
【例3】 (1)-2 019°是第________象限角.
解析 -2 019°=-6×360°+141°,141°是第二象限角,所以-2 019°为第二象限角.
答案 二
(2)已知,如图所示.
①分别写出终边落在OA,OB位置上的角的集合;
②写出终边落在阴影部分(包括边界)的角的集合.
解 ①终边落在OA位置上的角的集合为{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z},终边落在OB位置上的角的集合为{α|α=-30°+k·360°,k∈Z}.
②由题干图可知,阴影部分(包括边界)的角的集合是由所有介于-30°到135°之间的与之终边相同的角组成的集合,故可表示为{α|-30°+k·360°≤α≤135°+k·360°,k∈Z}.
【迁移1】 若将例3(2)题改为如图所示的图形,那么阴影部分(包括边界)表示的终边相同的角的集合如何表示?
解 在0°~360°范围内、阴影部分(包括边界)表示的范围是:
150°≤α≤225°,则满足条件的角α为
{α|k·360°+150°≤α≤k·360°+225°,k∈Z}.
【迁移2】 若将例3(2)题改为如图所示的图形,那么终边落在阴影部分(包括边界)的角的集合如何表示?
解 由题干图可知满足题意的角的集合为{β|k·360°+60°≤β≤k·360°+105°,k∈Z}∪{k·360°+240°≤β≤k·360°+285°,k∈Z}
={β|2k·180°+60°≤β≤2k·180°+105°,k∈Z}∪{β|(2k+1)·180°+60°≤β≤(2k+1)·180°+105°,k∈Z}
={β|n·180°+60°≤β≤n·180°+105°,n∈Z},
即所求的集合为{β|n·180°+60°≤β≤n·180°+105°,n∈Z}.
规律方法 表示区域角的三个步骤
第一步:先按逆时针的方向找到区域的起始和终止边界.
第二步:按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x|α第三步:起始、终止边界对应角α,β再加上360°的整数倍,即得区域角集合.
【训练3】 (1)已知α是第二象限角,则180°-α是( )
A.第一象限角 B.第二象限角
C.第三象限角 D.第四象限角
(2)已知α是锐角,那么2α是( )
A.第一象限角
B.第二象限角
C.小于180°的正角
D.第一或第二象限角
解析 (1)由α是第二象限角可得,90°+k·360°<α<180°+k·360°,k∈Z.所以180°-(90°+k·360°)>180°-α>180°-(180°+k·360°),即90°-k·360°>180°-α>-k·360°(k∈Z),所以180°-α为第一象限角.
(2)∵0°<α<90°,∴0°<2α<180°,∴2α是小于180°的正角.
答案 (1)A (2)C
一、素养落地
1.通过本节课的学习,学会利用图形描述建立形与数的联系,提升学生的数学抽象、直观想象素养.
2.本节主要借助坐标系,加深对角的概念的理解.
3.会写终边相同的角、区域角.
二、素养训练
1.在①160°;②480°;③-960°;④1 530°这四个角中,属于第二象限角的是( )
A.① B.①②
C.①②③ D.①②③④
解析 ②480°=120°+360°是第二象限角;
③-960°=-3×360°+120°是第二象限角;
④1 530°=4×360°+90°不是第二象限角,故选C.
答案 C
2.下列说法正确的是( )
A.三角形的内角一定是第一、二象限角
B.钝角不一定是第二象限角
C.相差180°整数倍的角为终边相同的角
D.钟表的时针旋转而成的角是负角
解析 A错,如90°既不是第一象限角,也不是第二象限角;
B错,钝角在90°到180°之间,是第二象限角;
C错,终边相同的角之间相差360°的整数倍;
D正确,钟表的时针是顺时针旋转,故是负角.
答案 D
3.把-936°化为α+k·360°(0°≤α<360°,k∈Z)的形式为________.
解析 -936°=-3×360°+144°,故-936°化为α+k·360°(0°≤α<360°,k∈Z)的形式为144°+(-3)×360°.
答案 144°+(-3)×360°
4.终边在直线y=-x上的角的集合S=________.
解析 由于直线y=-x是第二、四象限的角平分线,在0°~360°间所对应的两个角分别是135°和315°,
从而S={α|α=k·360°+135°,k∈Z}∪{α|α=k·360°+315°,k∈Z}={α|α=2k·180°+135°,k∈Z}∪{α|α=(2k+1)·180°+135°,k∈Z}={α|α=n·180°+135°,n∈Z}.
答案 {α|α=n·180°+135°,n∈Z}
5.已知,如图所示,
(1)写出终边落在射线OA,OB上的角的集合;
(2)写出终边落在阴影部分(包括边界)的角的集合.
解 (1)终边落在射线OA上的角的集合是{α|α=k·360°+210°,k∈Z}.
终边落在射线OB上的角的集合是{α|α=k·360°+300°,k∈Z}.
(2)终边落在阴影部分(含边界)角的集合是{α|k·360°+210°≤α≤k·360°+300°,k∈Z}.
基础达标
一、选择题
1.下列说法中,正确的是( )
A.第二象限的角都是钝角
B.第二象限角大于第一象限的角
C.若角α与角β不相等,则α与β的终边不可能重合
D.若角α与角β的终边在一条直线上,则α-β=k·180°(k∈Z)
解析 A错,495°=135°+360°是第二象限的角,但不是钝角;
B错,α=135°是第二象限角,β=360°+45°是第一象限的角,但α<β;
C错,α=360°,β=720°,则α≠β,但二者终边重合;
D正确,α与β的终边在一条直线上,则二者的终边重合或相差180°的整数倍,故α-β=k·180°(k∈Z).
答案 D
2.给出下列命题:
①-75°是第四象限角;②225°是第三象限角;③475°是第二象限角;④-315°是第一象限角.
其中正确的命题有( )
A.1个 B.2个
C.3个 D.4个
解析 ∵-90°<-75°<0°,∴-75°是第四象限角,①正确;∵180°<225°<270°,∴225°是第三象限角,②正确;∵360°+90°<475°<360°+180°,∴475°是第二象限角,③正确;∵-360°<-315°<-270°,∴-315°是第一象限角,④正确.故这4个命题都是正确的.
答案 D
3.与-468°角的终边相同的角的集合是( )
A.{α|α=k·360°+456°,k∈Z}
B.{α|α=k·360°+252°,k∈Z}
C.{α|α=k·360°+96°,k∈Z}
D.{α|α=k·360°-252°,k∈Z}
解析 因为-468°=-2×360°+252°,所以252°角与-468°角的终边相同,所以与-468°角的终边相同的角为k·360°+252°,k∈Z,故选B.
答案 B
4.角α与角β的终边关于y轴对称,则α与β的关系为( )
A.α+β=k·360°,k∈Z
B.α+β=k·360°+180°,k∈Z
C.α-β=k·360°+180°,k∈Z
D.α-β=k·360°,k∈Z
解析 法一 (特值法):令α=30°,β=150°,则α+β=180°.
法二 (直接法):因为角α与角β的终边关于y轴对称,所以β=180°-α+k·360°,k∈Z,即α+β=k·360°+180°,k∈Z.
答案 B
5.已知α为第三象限角,则所在的象限是( )
A.第一或第二象限 B.第二或第三象限
C.第一或第三象限 D.第二或第四象限
解析 法一 如图所示,将每个象限二等分,标号Ⅲ所在的区域即为所在的区域,故选D.
法二 ∵180°+k·360°<α<270°+k·360°,k∈Z,
∴90°+k· 180°<<135°+k·180°,k∈Z,
∴为第二或第四象限角,故选D.
答案 D
二、填空题
6.1 112°角是第________象限角.
解析 ∵1 112°=360°×3+32°,∴1 112°与32°的终边相同,均为第一象限角.
答案 一
7.终边在坐标轴上的角的集合为________.
解析 终边在x轴上的角的集合为α1=k·180°=2k·90°,终边在y轴上的角的集合为α2=k·180°+90°=(2k+1)90°,所以终边在坐标轴上的角的集合为{α|α=k·90°,k∈Z}.
答案 {α|α=k·90°,k∈Z}
8.若角θ的终边与60°角的终边相同,则在0°~360°内终边与角的终边相同的角为________.
解析 由题意设θ=60°+k·360°(k∈Z),
则=20°+k·120°(k∈Z),
则当k=0,1,2时,=20°,140°,260°.
答案 20°,140°,260°
三、解答题
9.已知角θ的7倍角的终边与角θ的终边重合,且0°<θ<360°,求满足条件的角θ的集合.
解 由题意知,7θ=θ+k·360°,k∈Z,
即6θ=k·360°,k∈Z,∴θ=k·60°,k∈Z,
由0°<θ<360°,得0°∴0∴θ的集合为{60°,120°,180°,240°,300°}.
10.已知角α=2 010°.
(1)把α改写成k·360°+β(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;
(2)求θ,使θ与α终边相同,且-360°≤θ<720°.
解 (1)由2 010°除以360°,得商为5,余数为210°.
∴取k=5,β=210°,
α=5×360°+210°.
又β=210°是第三象限角,
∴α为第三象限角.
(2)与2 010°终边相同的角为k·360°+2 010°(k∈Z).
令-360°≤k·360°+2 010°<720°(k∈Z),
解得-6≤k<-3(k∈Z).
所以k=-6,-5,-4.
将k的值代入k·360°+2 010°中,得角θ的值为-150°,210°,570°.
能力提升
11.写出如图所示阴影部分的角α的范围.
解 (1)因为与45°角终边相同的角可写成45°+k·360°,k∈Z的形式,与-180°+30°=-150°角终边相同的角可写成-150°+k·360°,k∈Z的形式.所以图(1)阴影部分的角α的范围可表示为{α|-150°+k·360°<α≤45°+k·360°,k∈Z}.
(2)同理可表示图(2)中角α的范围为{α|45°+k·360°≤α≤300°+k·360°,k∈Z}.
12.在集合{α|α=k·90°+45°,k∈Z}中
(1)有几种终边不相同的角?
(2)有几个在区间(-360°,360°)内的角?
(3)写出其中的第三象限角.
解 (1)由k=4n,4n+1,4n+2,4n+3(n∈Z),知在给定的角的集合中终边不相同的角共有四种.
(2)由-360°又k∈Z,故k=-4,-3,-2,-1,0,1,2,3.
所以在给定的角的集合中在区间(-360°,360°)内的角共有8个.
(3)其中的第三象限角为k·360°+225°,k∈Z.
课件36张PPT。第五章 三角函数[数学文化]——了解数学文化的发展与应用
早期对于三角函数的研究可以追溯到古代.古希腊三角术的奠基人是公元前2世纪的喜帕恰斯,他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同).对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的.喜帕恰斯实际上给出了最早的三角函数数值表.然而古希腊的三角学基本是球面三角学,这与古希腊人研究的主体是天文学有关.梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理.古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法.托勒密还给出了所有0度到180度的所有整数和半整数弧度对应的正弦值.喜帕恰斯[读图探新]——发现现象背后的知识
伦敦眼
伦敦眼(英文名:The London Eye),全称英国航空伦敦眼(The British Airways London Eye)又称千禧之轮,坐落在伦敦泰晤士河畔,是世界第四大摩天轮,是伦敦的地标之一,也是伦敦最吸引游人的观光点之一.伦敦眼于1999年年底开幕,总高度135米(443英尺).伦敦眼共有32个乘坐舱,因舱内外用钢化玻璃打造,所以设有空调系统.每个乘坐舱可载客约25名,回转速度约为每秒0.26米,即一圈需时30分钟.问题1:伦敦眼转一圈需用时30分钟,这就叫周期现象,那么周期为多少呢?
问题2:当游客坐伦敦眼达到最高点时,伦敦美景尽收眼底,总高度135米对应于三角函数的哪些量?
链接:(1)周期为30分钟;(2)游客达到最高点与最低点时,分别对应了三角函数的最大值与最小值.5.1 任意角和弧度制
5.1.1 任意角教材知识探究周日早晨,小明起床后,发现自己的闹钟停在5:00这一刻,他立即更换了电池,调整到了正常时间6:30,并开始正常的学习.问题 小明在调整闹钟时间时,时针与分针各转过了多少度?
提示 时针转了-45°,分针转了-540°.1.角的分类注意正角、负角的旋转方向逆时针顺时针没有2.角的加法
(1)若两角的旋转方向相同且旋转量相等,那么就称 .
(2)设α、β是任意两个角,把角α的终边旋转角β,这时终边所对应的角是 .
(3)相反角:把射线OA绕端点O按不同方向旋转相同的量所成的两个角叫做互为 ,角α的相反角记为 ,α-β=α+ .α=βα+β相反角-α(-β)3.象限角
如果角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是 .如果角的终边在坐标轴上,就认为这个角不属于任何一个 .
4.终边相同的角
所有与角α终边相同的角,连同角α在内,可构成一个集合 , 即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.第几象限角象限S={β|β=α+k·360°k∈Z}教材拓展补遗
[微判断]
1.经过1小时,时针转过30°.( )
提示 因为是顺时针旋转,所以时针转过-30°.
2.终边与始边重合的角是零角.( )
提示 终边与始边重合的角是k·360°(k∈Z).
3.第一象限角都是锐角.( )
提示 390°为第一象限角,但不是锐角.
4.钝角是第二象限角.( )
5.第三象限的角一定比第一象限的角大.( )
提示 例如-120°为第三象限角,60°为第一象限角,故错误.×××√×[微训练]
1.-378°是第________象限角.
解析 -378°=-360°-18°,因为-18°是第四象限角,所以-378°是第四象限角.
答案 四2.与-457°角的终边相同的角的集合是( )
A.{α|α=457°+k·360°,k∈Z}
B.{α|α=97°+k·360°,k∈Z}
C.{α|α=263°+k·360°,k∈Z}
D.{α|α=-263°+k·360°,k∈Z}
解析 由于-457°=-1×360°-97°=-2×360°+263°,故与-457°角的终边相同的角的集合是{α|α=-457°+k·360°,k∈Z}={α|α=263°+k·360°,k∈Z}.
答案 C[微思考]
1.角的概念推广后角的范围有怎样的变化?
提示 角的概念推广后,角度的范围不限于0°~360°,而是任意的角,包括正角、负角与零角.
2.终边相同的角相等吗?相等的角终边相同吗?
提示 当角的始边相同时,若角相等,则终边相同,但若角终边相同,则不一定相等.题型一 与任意角有关的概念辨析
【例1】 (1)下列说法中,正确的是________(填序号).
①终边落在第一象限的角为锐角;
②锐角是第一象限的角;
③第二象限的角为钝角;
④小于90°的角一定为锐角;
⑤角α与-α的终边关于x轴对称.
解析 终边落在第一象限的角不一定是锐角,如400°的角是第一象限的角,但不是锐角,故①的说法是错误的;同理第二象限的角也不一定是钝角,故③的说法也是错误的;小于90°的角不一定为锐角,比如负角,故④的说法是错误的.
答案 ②⑤(2)如图,射线OA先绕端点O逆时针方向旋转60°到OB处,再按顺时针方向旋转820°至OC处,则β=________.解析 ∠AOC=60°+(-820°)=-760°,β=-760°+720°=-40°.
答案 -40°规律方法 判断角的概念问题的关键与技巧
(1)关键:正确理解象限角与锐角、直角、钝角、平角、周角等概念.
(2)技巧:判断一种说法正确需要证明,而判断一种说法错误只要举出反例即可.【训练1】 写出图(1),(2)中的角α,β,γ的度数.解 题干图(1)中,α=360°-30°=330°;
题干图(2)中,β=-360°+60°+150°=-150°;
γ=360°+60°+(-β)=360°+60°+150°=570°.题型二 及应用在终边相同的角的表示中,k·360°可以理解为按一定方向转动的圈数,k取正整数时,按逆时针转,k取负整数时,按顺时针转,k=0时,没有转动.终边相同的角的表示【例2】 写出终边落在直线y=x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.
解 直线y=x与x轴的夹角是45°,在0°~360°范围内,终边在直线y=x上的角有两个:45°,225°.因此,终边在直线y=x上的角的集合:S={β|β=45°+k·360°,k∈Z}∪{β|β=225°+k·360°,k∈Z}
={β|β=45°+2k·180°,k∈Z}∪{β|β=45°+(2k+1)·180°,k∈Z}={β|β=45°+n·180°,n∈Z}.
∴S中适合-360°≤β<720°的元素是:
45°-2×180°=-315°;45°-1×180°=-135°;
45°+0×180°=45°;45°+1×180°=225°;
45°+2×180°=405°;45°+3×180°=585°.规律方法 解答本题关键是找到0°~360°范围内,终边落在直线y=x的角:45°,225°,再利用终边相同的角的关系写出符合条件的所有角的集合,如果集合能化简的还要化成最简.【训练2】 写出终边落在x轴上的角的集合S.
解 S={α|α=k·360°,k∈Z}∪{α|α=k·360°+180°,k∈Z}={α|α=2k·180°,k∈Z}∪{α|α=(2k+1)·180°,k∈Z}={α|α=n·180°,n∈Z}.题型三 象限角和区间(域)角的应先找到0°~360°范围内与其终边相同的角【例3】 (1)-2 019°是第________象限角.
解析 -2 019°=-6×360°+141°,141°是第二象限角,所以-2 019°为第二象限角.
答案 二表示(2)已知,如图所示.①分别写出终边落在OA,OB位置上的角的集合;
②写出终边落在阴影部分(包括边界)的角的集合.解 ①终边落在OA位置上的角的集合为{α|α=90°+45°+k·360°,k∈Z}={α|α=135°+k·360°,k∈Z},终边落在OB位置上的角的集合为{α|α=-30°+k·360°,k∈Z}.
②由题干图可知,阴影部分(包括边界)的角的集合是由所有介于-30°到135°之间的与之终边相同的角组成的集合,故可表示为{α|-30°+k·360°≤α≤135°+k·360°,k∈Z}.【迁移1】 若将例3(2)题改为如图所示的图形,那么阴影部分(包括边界)表示的终边相同的角的集合如何表示?
解 在0°~360°范围内、阴影部分(包括边界)表示的范围是:
150°≤α≤225°,则满足条件的角α为
{α|k·360°+150°≤α≤k·360°+225°,k∈Z}.【迁移2】 若将例3(2)题改为如图所示的图形,那么终边落在
阴影部分(包括边界)的角的集合如何表示?
解 由题干图可知满足题意的角的集合为{β|k·360°+60°
≤β≤k·360°+105°,k∈Z}∪{k·360°+240°≤β≤k·360°+285°,k∈Z}
={β|2k·180°+60°≤β≤2k·180°+105°,k∈Z}∪{β|(2k+1)·180°+60°≤β≤(2k+1)·180°+105°,k∈Z}
={β|n·180°+60°≤β≤n·180°+105°,n∈Z},
即所求的集合为{β|n·180°+60°≤β≤n·180°+105°,n∈Z}.规律方法 表示区域角的三个步骤
第一步:先按逆时针的方向找到区域的起始和终止边界.
第二步:按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x|α第三步:起始、终止边界对应角α,β再加上360°的整数倍,即得区域角集合.【训练3】 (1)已知α是第二象限角,则180°-α是( )
A.第一象限角 B.第二象限角
C.第三象限角 D.第四象限角
(2)已知α是锐角,那么2α是( )
A.第一象限角
B.第二象限角
C.小于180°的正角
D.第一或第二象限角解析 (1)由α是第二象限角可得,90°+k·360°<α<180°+k·360°,k∈Z.所以180°-(90°+k·360°)>180°-α>180°-(180°+k·360°),即90°-k·360°>180°-α>-k·360°(k∈Z),所以180°-α为第一象限角.
(2)∵0°<α<90°,∴0°<2α<180°,∴2α是小于180°的正角.
答案 (1)A (2)C一、素养落地
1.通过本节课的学习,学会利用图形描述建立形与数的联系,提升学生的数学抽象、直观想象素养.
2.本节主要借助坐标系,加深对角的概念的理解.
3.会写终边相同的角、区域角.二、素养训练
1.在①160°;②480°;③-960°;④1 530°这四个角中,属于第二象限角的是( )
A.① B.①②
C.①②③ D.①②③④
解析 ②480°=120°+360°是第二象限角;
③-960°=-3×360°+120°是第二象限角;
④1 530°=4×360°+90°不是第二象限角,故选C.
答案 C2.下列说法正确的是( )
A.三角形的内角一定是第一、二象限角
B.钝角不一定是第二象限角
C.相差180°整数倍的角为终边相同的角
D.钟表的时针旋转而成的角是负角
解析 A错,如90°既不是第一象限角,也不是第二象限角;
B错,钝角在90°到180°之间,是第二象限角;
C错,终边相同的角之间相差360°的整数倍;
D正确,钟表的时针是顺时针旋转,故是负角.
答案 D3.把-936°化为α+k·360°(0°≤α<360°,k∈Z)的形式为________.
解析 -936°=-3×360°+144°,故-936°化为α+k·360°(0°≤α<360°,k∈Z)的形式为144°+(-3)×360°.
答案 144°+(-3)×360°4.终边在直线y=-x上的角的集合S=________.
解析 由于直线y=-x是第二、四象限的角平分线,在0°~360°间所对应的两个角分别是135°和315°,
从而S={α|α=k·360°+135°,k∈Z}∪{α|α=k·360°+315°,k∈Z}={α|α=2k·180°+135°,k∈Z}∪{α|α=(2k+1)·180°+135°,k∈Z}={α|α=n·180°+135°,n∈Z}.
答案 {α|α=n·180°+135°,n∈Z}5.已知,如图所示,
(1)写出终边落在射线OA,OB上的角的集合;
(2)写出终边落在阴影部分(包括边界)的角的集合.
解 (1)终边落在射线OA上的角的集合是{α|α=k·360°+210°,k∈Z}.
终边落在射线OB上的角的集合是{α|α=k·360°+300°,k∈Z}.
(2)终边落在阴影部分(含边界)角的集合是{α|k·360°+210°≤α≤k·360°+300°,k∈Z}.