编制人 审 核 人 主讲人 评价等级
班 别 学生姓名 组 别 学习日期
1.2应用举例 讲读设计
教学目标:能够运用正弦定理、余弦定理等知识和方法解决实际问题
教学重点:
教学难点:
教学过程:
一、预习反馈
1、正弦定理:在中,、、分别为角、、的对边,则有
(为的外接圆的半径)
2、正弦定理的变形公式:①,,;
②,,;③;
3、三角形面积公式:.
4、余弦定理:在中,有,推论:
二、学习目标
能够运用正弦定理、余弦定理等知识和方法解决实际问题
三、自学与探究
(一)自学提示 整合教材知识,落实基本能力
例1. 如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,BAC=,ACB=. 求A、B两点的距离(精确到0.1m).
提问1:ABC中,根据已知的边和对应角,运用哪个定理比较适当?
提问2:运用该定理解题还需要那些边和角呢?
分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题
题目条件告诉了边AB的对角,AC为已知边,
再根据三角形的内角和定理很容易根据两个已知角算出AC的对角,
应用正弦定理算出AB边.
例2. 如图,A、B两点都在河的对岸(不可到达),设计一种测量A、B两点间距离的方法.
分析:这是例1的变式题,研究的是两个 的点之间的距离测量问题.
首先需要构造三角形,所以需要确定C、D两点. 根据正弦定理中已知三角形的任意两个内角与一边既可求出另两边的方法,分别求出AC和BC,再利用余弦定理可以计算出AB的距离.
变式:若在河岸选取相距40米的C、D两点,测得BCA=60°,ACD=30°,CDB=45°,BDA =60°.
例3. 如图,在山顶铁塔上B处测得地面上一点A的俯角=54,在塔底C处测得A处的俯角=50. 已知铁塔BC部分的高为27.3 m,求出山高CD(精确到1 m)
例4. 如图,一艘海轮从A出发,沿北偏东75的方向航行67.5 n mile后到达海岛B,然后从B出发,沿北偏东32的方向航行54.0 n mile后达到海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1,距离精确到0.01n mile)
分析:
首先由三角形的内角和定理求出角ABC,
然后用余弦定理算出AC边,
再根据正弦定理算出AC边和AB边的夹角CAB.
例5. 某巡逻艇在A处发现北偏东45相距9海里的C处有一艘走私船,正沿南偏东75的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?
(二)合作探讨
四、当堂检测
1、如右下图,为了测量隧道口AB的长度,给定下列四组数据,测量时应当用数据( )
A、
B、
C、
D、
2、已知两座灯塔A和B与海洋观察站C的距离相等,灯塔A在观察站C的北偏东40?,灯塔B在观察站C的南偏东60?,则灯塔A在灯塔B的什么位置?
3、在某个位置测得某山峰仰角为,对着山峰在平行地面上前进600m后测仰角为原来的2倍,继续在平行地面上前进,测得山峰的仰角为原来的4倍,则该山峰的高度为多少?
4、在一幢20米高的楼顶测得对面一塔顶的仰角为60?,塔基的俯角为45?,那么这座塔的高度是多少米?
五、归纳小结
六、课后作业 见练习册
七、板书设计
八、课后反思