课件26张PPT。
“课下双层级演练过关 ”见“课时跟踪检测(十七) ”
(单击进入电子文档)
谢谢!课时跟踪检测(十七) 频率与概率
A级——学考水平达标练
1.某人将一枚硬币连掷10次,正面朝上的情况出现了8次,若用A表示“正面朝上”这一事件,则A的( )
A.概率为 B.频率为
C.频率为8 D.概率接近于8
解析:选B 做n次随机试验,事件A发生了m次,则事件A发生的频率为.如果多次进行试验,事件A发生的频率总在某个常数附近摆动,那么这个常数才是事件A的概率.故=为事件A的频率.
2.某地气象局预报说:明天本地降水的概率为80%,则下列解释正确的是( )
A.明天本地有80%的区域降水,20%的区域不降水
B.明天本地有80%的时间降水,20%的时间不降水
C.明天本地降水的可能性是80%
D.以上说法均不正确
解析:选C 明天本地降水的概率为80%不是说有80%的区域降水,也不是说有80%的时间降水,而是指降水的可能性是80%,故选C.
3.(多选题)下列命题中错误的是( )
A.设有一批产品,其次品率为0.05,则从中任取200件,必有10件是次品
B.做100次抛硬币的试验,结果51次出现正面朝上,因此,出现正面朝上的概率是
C.随机事件发生的频率就是这个随机事件发生的概率
D.抛掷骰子100次,得点数是1的结果有18次,则出现1点的频率是
解析:选ABC A错,次品率是指出现次品的可能性,从中任取200件,可能有10件次品,也可能没有.BC混淆了频率与概率的区别.D正确.
4.某医院治疗一种疾病的治愈率为,前4位病人都未治愈,则第5位病人的治愈率为( )
A.1 B.
C. D.0
解析:选B 治愈率为,表明每位病人被治愈的概率均为,并不是5人中必有1人被治愈.故选B.
5.从一批电视机中随机抽出10台进行检验,其中有1台次品,则关于这批电视机,下列说法正确的是( )
A.次品率小于10% B.次品率大于10%
C.次品率等于10% D.次品率接近10%
解析:选D 抽出的样本中次品的频率为,即10%,所以样本中次品率大约为10%,所以总体中次品率大约为10%.
6.利用简单随机抽样的方法抽取某校200名学生,其中戴眼镜的学生有123人,若在这个学校随机调查一名学生,则他戴眼镜的概率约为________.
解析:样本中的学生戴眼镜的频率为=0.615,所以随机调查一名学生,他戴眼镜的概率约为0.615.
答案:0.615
7.容量为200的样本的频率分布直方图如图所示.根据样本的频率分布直方图计算样本数据落在[6,10)内的频数为______,估计数据落在[2,10)内的概率约为________.
解析:数据落在[6,10)内的频数为200×0.08×4=64,数据落在[2,10)内的频率为(0.02+0.08)×4=0.4.
由频率估计概率知,所求概率约为0.4.
答案:64 0.4
8.某公司在过去几年内使用某种型号的灯管1 000支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如表所示:
分组
频数
频率
[500,900)
48
[900,1 100)
121
[1 100,1 300)
208
[1 300,1 500)
223
[1 500,1 700)
193
[1 700,1 900)
165
[1 900,+∞)
42
(1)求各组的频率;
(2)根据上述统计结果,估计灯管使用寿命不足1 500小时的概率.
解:(1)频率依次是0.048,0.121,0.208,0.223,0.193,
0.165,0.042.
(2)样本中寿命不足1 500小时的频数是48+121+208+223=600,
所以样本中寿命不足1 500小时的频率是=0.6.
即灯管使用寿命不足1 500小时的概率约为0.6.
9.某制造商今年3月生产了一批乒乓球,随机抽取100个进行检查,测得每个乒乓球的直径(单位:mm),将数据分组如下表:
分组
频数
频率
[39.95,39.97)
10
[39.97,39.99)
20
[39.99,40.01)
50
[40.01,40.03]
20
合计
100
(1)请将上表补充完整;
(2)已知标准乒乓球的直径为40.00 mm,试求这批乒乓球的直径误差不超过0.03 mm的概率.
解:(1)如下表所示:
分组
频数
频率
[39.95,39.97)
10
0.1
[39.97,39.99)
20
0.2
[39.99,40.01)
50
0.5
[40.01,40.03]
20
0.2
合计
100
1.0
(2)标准尺寸是40.00 mm,且误差不超过0.03 mm,即直径落在[39.97,40.03]内.由(1)中频率分布表知,直径落在[39.97,40.03]内的频率为0.2+0.5+0.2=0.9,所以直径误差不超过0.03 mm的概率约为0.9.
10.在一次试验中,将一种血清注射到500只豚鼠体内,最初,这些豚鼠中150只有圆形细胞,250只有椭圆形细胞,100只有不规则形状细胞,被注射这种血清之后,没有一个有圆形细胞的豚鼠被感染,50个有椭圆形细胞的豚鼠被感染,有不规则形状细胞的豚鼠全部被感染.根据试验结果,估计(1)圆形细胞;(2)椭圆形细胞;(3)不规则形状细胞的豚鼠分别被这种血清感染的概率.
解:(1)记“圆形细胞的豚鼠被感染”为事件A,由题意知,A为不可能事件,所以P(A)=0.
(2)记“椭圆形细胞的豚鼠被感染”为事件B,
由题意知P(B)===0.2.
(3)记“不规则形状细胞的豚鼠被感染”为事件C,由题意知事件C为必然事件,所以P(C)=1.
B级——高考水平高分练
1.根据山东省教育研究机构的统计资料,今在校中学生近视率约为37.4%,某眼镜商要到一中学给学生配镜,若已知该校学生总数为600人,则该眼镜商应带眼镜的数目为( )
A.374副 B.224.4副
C.不少于225副 D.不多于225副
解析:选C 根据概率相关知识,该校近视生人数约为600×37.4%=224.4,结合实际情况,眼镜商应带眼镜数不少于225副,故选C.
2.随着互联网的普及,网上购物已逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4 500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如下表:
满意情况
不满意
比较满意
满意
非常满意
人数
200
n
2 100
1 000
根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率是( )
A. B.
C. D.
解析:选C 由题意得,n=4 500-200-2 100-1 000=1 200,所以随机调查的消费者中对网上购物“比较满意”或“满意”的总人数为1 200+2 100=3 300,所以随机调查的消费者中对网上购物“比较满意”或“满意”的频率为=.由此估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率为.故选C.
3.鱼池中共有N条鱼,从中捕出n条并标上记号后放回池中,经过一段时间后,再从池中捕出M条,其中有记号的有m条,则估计鱼池中共有鱼约________条.
解析:由题意得≈,∴N≈.
答案:
4.对某厂生产的某种产品进行抽样检查,数据如下表所示:
调查件数
50
100
200
300
500
合格件数
47
92
192
285
478
根据表中所提供的数据,若要从该厂生产的此种产品中抽到950件合格品,大约需抽查________件产品.
解析:由表中数据知:抽查5次,产品合格的频率依次为0.94,0.92,0.96,0.95,0.956,可见频率在0.95附近摆动,故可估计该厂生产的此种产品合格的概率约为0.95.设大约需抽查n件产品,则=0.95,所以n=1 000.
答案:1 000
5.某中学从参加高一年级上学期期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如图所示的频率分布直方图.观察图形的信息,回答下列问题:
(1)估计这次考试的及格率(60分及以上为及格);
(2)从成绩在70分以上(包括70分)的学生中任选一人,求选到第一名学生的概率(第一名学生只一人).
解:(1)依题意,60分及以上的分数所在的第三、四、五、六组的频率和为(0.015+0.03+0.025+0.005)×10=0.75,
所以这次考试的及格率约为75%.
(2)因为成绩在[70,100]的人数是60×(0.03+0.025+0.005)×10=36,
所以从成绩在70分以上(包括70分)的学生中任选一人,
选到第一名学生的概率P=.
6.街头有人摆一种游戏,方法是同时投掷两枚骰子,如果两枚骰子点数之和是2,3,4,10,11,12这六种情况,红方胜,而当两枚骰子点数之和是5,6,7,8,9时,白方胜,这种游戏对双方公平吗?若不公平,请说明哪方占便宜?
解:两枚骰子点数之和如下表:
1
2
3
4
5
6
1
2
3
4
5
6
7
2
3
4
5
6
7
8
3
4
5
6
7
8
9
4
5
6
7
8
9
10
5
6
7
8
9
10
11
6
7
8
9
10
11
12
其中点数之和是2,3,4,10,11,12这六种情况的共12种,概率是=,
两枚骰子点数之和是5,6,7,8,9的情况共24种,概率是=.所以这种游戏不公平,白方占便宜.