26.2.1 实际问题与反比例函数 (1)
自学案
(一)学习目标
1.使学生进一步理解和掌握反比例函数及其图象与性质
2.进一步理解反比例函数关系式的构造,掌握用反比例函数的方法解决实际问题.
(二)学习重点
1、用反比例函数解决实际问题.
(三)课前预习
一、填空题
1.一个水池装水12m3,如果从水管中每小时流出xm3的水,经过yh可以把水放完,那么y与x的函数关系式是______,自变量x的取值范围是______.
2.若梯形的下底长为x,上底长为下底长的,高为y,面积为60,则y与x的函数关系是______ (不考虑x的取值范围).
二、选择题
3.某一数学课外兴趣小组的同学每人制作一个面积为200 cm2的矩形学具进行展示.设矩形的宽为xcm,长为ycm,那么这些同学所制作的矩形的长y(cm)与宽x(cm)之间的函数关系的图象大致是( ).
4.下列各问题中两个变量之间的关系,不是反比例函数的是( ).
(A)小明完成百米赛跑时,所用时间t(s)与他的平均速度v(m/s)之间的关系
(B)长方形的面积为24,它的长y与宽x之间的关系
(C)压力为600N时,压强p(Pa)与受力面积S(m2)之间的关系
(D)一个容积为25L的容器中,所盛水的质量m(kg)与所盛水的体积V(L)之间的关系
5.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:
体积x/ml 100 80 60 40 20
压强y/kPa 60 75 100 150 300
则可以反映y与x之间的关系的式子是( ).
(A)y=3000x (B)y=6000x (C) (D)
(四)疑惑摘要:
预习之后,你还有哪些没有弄清的问题,请记下来,课堂上我们共同探讨。
探究案
例1.见教材第58页
分析:此题类似应用题中的“工程问题”,关系式为工作总量=工作速度×工作时间,由于题目中货物总量是不变的,两个变量分别是速度v和时间t,因此具有反比关系,(2)问涉及了反比例函数的增减性,即当自变量t取最大值时,函数值v取最小值是多少?
例2.(补充)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气体体积V(立方米)的反比例函数,其图像如图所示(千帕是一种压强单位)
(1)写出这个函数的解析式;
(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?
(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?
分析:题中已知变量P与V是反比例函数关系,并且图象经过点A,利用待定系数法可以求出P与V的解析式,得,(3)问中当P大于144千帕时,气球会爆炸,即当P不超过144千帕时,是安全范围。根据反比例函数的图象和性质,P随V的增大而减小,可先求出气压P=144千帕时所对应的气体体积,再分析出最后结果是不小于立方米
训练案
一、填空题
6.甲、乙两地间的公路长为300km,一辆汽车从甲地去乙地,汽车在途中的平均速度为v(km/h),到达时所用的时间为t(h),那么t是v的______函数,v关于t的函数关系式为______.
7.农村常需要搭建截面为半圆形的全封闭蔬菜塑料暖房(如图所示),则需要塑料布y(m2)与半径R(m)的函数关系式是(不考虑塑料埋在土里的部分)__________________.
二、选择题
8.一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是( ).
三、解答题
9.一个长方体的体积是100cm3,它的长是y(cm),宽是5cm,高是x(cm).
(1)写出长y(cm)关于高x(cm)的函数关系式,以及自变量x的取值范围;
(2)画出(1)中函数的图象;
(3)当高是3cm时,求长.