6.3梯形的面积 教案

文档属性

名称 6.3梯形的面积 教案
格式 zip
文件大小 69.4KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2019-12-16 07:47:45

图片预览

文档简介

《梯形的面积》教学设计
  教学内容:人教版小学数学教材五年级上册第95、96页内容及相关练习。
  教学目标:
??? 1.通过操作、观察、比较等活动,自主探索梯形面积计算公式,渗透转化的数学思想方法。
??? 2.能正确地应用公式计算梯形的面积,并能解决生活中一些简单的实际问题。
  教学重点:探索并掌握梯形面积计算公式。
  教学难点:理解梯形面积计算公式的推导过程,体会转化的思想。
  教学准备:课件。
  学具准备:两个完全重合的梯形、一个和之前两个梯形不重合的梯形、剪刀、尺子、透明的方格纸。
  教学过程:
?? ?一、复习引入,知识铺垫
??? 计算下面各图形的面积:
全班核对答案。
教师:平行四边形、三角形的面积计算公式分别是什么?
教师:它们之间有什么联系呢?
因为两个完全重合的三角形可以拼成一个平行四边形,所以平行四边形面积的计算公式的一半就是三角形面积的计算公式。
二、探究梯形面积的计算公式
1.提出问题(课件出示教材第95页的主题图)。
教师:同学们在图中发现了什么?
教师:车窗玻璃的形状是梯形。怎样求出它的面积呢?
??? 教师:你能用学过的方法推导出梯形的面积计算公式吗?
2.动手操作。
(1)选择合适的材料,进行操作。(同桌合作)
(2)反馈交流。
?? ?让各小组充分展示操作过程。关键了解学生是怎样想的?询问其余同学是否有疑问?在操作中学生会发现,只有两个完全重合的梯形才能拼成一个平行四边形。
预设:
①???? 数方格;
②???? 拼摆,转化成平行四边形;
③???? 割,转化成两个三角形;
④???? 割,转化成一个平行四边形和一个三角形;
⑤???? 割,转化成长方形和两个三角形;
⑥???? 割补法,转化成平行四边形。
3.公式推导。
(1)教师:方法①的数方格的方法中渗透着割补法的思想,方法②到方法⑥都是把梯形转化成我们已经学过面积计算方法的图形。先以方法②为例,观察原有的梯形和转化后的平行四边形,你发现它们之间有哪些等量关系?
??? 学生:梯形的上底与下底的和等于平行四边形的底,梯形的高和平行四边形的高相等。梯形的面积是平行四边形的面积的一半。
学生边说,教师边课件演示。
逐步完成板书:
教师:如果用表示梯形的面积,表示梯形的上底,表示梯形的下底,表示梯形的高,梯形的面积公式还可以写成:(板书)。
(2)教师:观察方法③,如果把梯形割成两个三角形,如何来推导梯形的面积计算公式呢?这两个三角形和原来的梯形有什么样的等量关系呢?
学生:三角形1的底就是梯形的上底,三角形2的底就是梯形的下底,两个三角形的高都和梯形的高相等。两个三角形的面积之和就是梯形的面积。
学生边说,教师边课件演示。
教师:为了方便,我们直接用表示梯形的上底,用表示梯形的下底, 表示梯形的高。
教师:这与前面推导出来的梯形面积计算公式是一样的。
(3)教师:观察方法④,如果把梯形分割成一个平行四边形和一个三角形,又如何推导公式呢?割成的平行四边形、三角形和原来的梯形有什么样的等量关系呢?
学生:平行四边形的底就是梯形的上底,三角形的底等于梯形的下底减上底,平行四边形、三角形和梯形的高是相等的。平行四边形的面积加三角形的面积就等于梯形的面积。
学生边说,教师边课件演示。
其中的计算过程稍复杂,可配合教师讲解完成。
教师:这和前面推导出来的结论是一样的。
(4)教师:看方法⑤,把梯形分割成一个长方形和两个三角形,又如何推导公式呢?先说说它们之间有什么样的等量关系?
学生:长方形的长就是梯形的上底,长方形、三角形和梯形的高是相等的。长方形加两个三角形的面积就是梯形的面积。
学生发现两个三角形的底是多少,无法描述,不确定。这时,教师演示课件动画效果,把两个三角形拼成一个三角形。新三角形的底就是梯形的下底减上底。
教师边课件演示。
教师:接下来的推导过程和方法④是一样的。
(5)教师:方法⑥,通过割补法把梯形转化成平行四边形。它们之间又有什么样的等量关系呢?
学生:平行四边形的底就是梯形的上底和下底之和,平行四边形的高等于梯形的高的一半。平行四边形的面积和梯形的面积相等。
教师课件演示。
教师:通过上面多种转化方法,我们知道了梯形的面积计算公式,现在你知道要计算梯形的面积需要哪些数据了吗?(上底、下底、高)
三、学以致用
1.出示教材第96页例3。
教师:什么是横截面?
请学生独立解决,全班核对答案。
教师:因为我们刚刚开始学梯形的面积公式,对公式不熟,所以计算时可以先写上公式,再列算式。等以后熟练了,公式可以省略。
2.出示教材第96页“做一做”。
教师:这题特别要看清楚问题,问的是“它们的面积分别是多少”,所以问的是“左边梯形的面积是多少”和“右边梯形的面积是多少”,千万不要把“分别”看成“共”,变成求整个大梯形的面积。
3.下面图中哪几个梯形的面积是相等的?为什么?
小结:这几个梯形的高相等,所以判断哪几个梯形的面积相等,只要看哪几个梯形的上底与下底的和相等就可以了。
??? 四、回顾反思
  教师:回顾本节课所学的内容,你最大的收获是什么?
  【设计意图】在总结回顾中,帮助学生进一步理解提升所学的知识。
??? 五、布置作业
  完成教材第97页第1题到第5题。