2019年北师大版七年级上册数学《第4章 基本平面图形》单元测试卷(解析版)

文档属性

名称 2019年北师大版七年级上册数学《第4章 基本平面图形》单元测试卷(解析版)
格式 zip
文件大小 344.0KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2019-12-23 15:53:17

图片预览

文档简介

2019年北师大版七年级上册数学《第4章 基本平面图形》单元测试卷
一.选择题(共15小题)
1.如图的四个图形和每一个图形相应的一句描述,其中所有图形都是画在同一个平面上.

①线段AB与射线MN不相交;②点C在线段AB上;③直线a和直线b不相交;④延长射线AB,则会通过点C.其中正确的语句的个数有(  )
A.0个 B.1个 C.2个 D.3个
2.如图,经过刨平的木板上的A,B两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是(  )

A.两点之间,线段最短
B.两点确定一条直线
C.垂线段最短
D.在同一平面内,过一点有且只有一条直线与已知直线垂直
3.如图,小红同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是(  )

A.两点之间,线段最短
B.两点确定一条直线
C.过一点,有无数条直线
D.连接两点之间的线段叫做两点间的距离
4.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=(  )
A.11cm B.5cm C.11cm或5cm D.11cm或3cm
5.矩形、菱形、正方形都具有的性质是(  )
A.对角线相等 B.对角线互相垂直
C.对角线互相平分 D.对角线平分对角
6.下列判断错误的是(  )
A.对角线相互垂直且相等的平行四边形是正方形
B.对角线相互垂直平分的四边形是菱形
C.对角线相等的四边形是矩形
D.对角线相互平分的四边形是平行四边形
7.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是(  )
A.6 B.7 C.8 D.9
8.从n边形一个顶点出发,可以作(  )条对角线.
A.n B.n﹣1 C.n﹣2 D.n﹣3
9.已知⊙O的半径为6cm,P为线段OA的中点,若点P在⊙O上,则OA的长(  )
A.等于6cm B.等于12cm C.小于6cm D.大于12cm
10.下列说法错误的是(  )
A.圆有无数条直径
B.连接圆上任意两点之间的线段叫弦
C.过圆心的线段是直径
D.能够重合的圆叫做等圆
11.如果两个圆心角相等,那么(  )
A.这两个圆心角所对的弦相等
B.这两个圆心角所对的弧相等
C.这两个圆心角所对的弦的弦心距相等
D.以上说法都不对
12.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,则弦BC的长等于(  )

A.8 B.10 C.11 D.12
13.用一把带有刻度的直角尺,(1)可以画出两条平行线;(2)可以画出一个角的平分线;(3)可以确定一个圆的圆心.以上三个判断中正确的个数是(  )
A.0个 B.1个 C.2个 D.3个
14.尺规作图所用的作图工具是指(  )
A.刻度尺和圆规 B.不带刻度的直尺和圆规
C.刻度尺 D.圆规
15.画∠AOB的平分线的方法步骤是:
①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;
②分别以M、N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;
③过点C作射线OC.射线OC就是∠AOB的角平分线.
请你说明这样作角平分线的根据是(  )
A.SSS B.SAS C.ASA D.AAS
二.填空题(共5小题)
16.在一条线段上取n个点,这n个点连同线段的两个端点一共有(n+2)个点,若以这(n+2)个点中任意两点为端点的线段共有45条,则n=   .
17.种树时,只要定出两个树坑的位置,就能使同一行树坑在同一条直线上,其中的数学道理是:   .
18.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是   .

19.过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是   边形.
20.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A的度数是   .

三.解答题(共3小题)
21.如图,C是线段AB外一点,按要求画图:
(1)画射线CB;
(2)反向延长线段AB;
(3)连接AC,并延长AC至点D,使CD=AC.

22.提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?
探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
(1)当AP=AD时(如图②):

∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD.
∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,
∴S△CDP=S△CDA.
∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP
=S四边形ABCD﹣S△ABD﹣S△CDA
=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)
=S△DBC+S△ABC.
(2)当AP=AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
(3)当AP=AD时,S△PBC与S△ABC和S△DBC之间的关系式为:   ;
(4)一般地,当AP=AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
问题解决:当AP=AD(0≤≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为:   .
23.如图,AB是⊙O的直径,把AB分成几条相等的线段,以每条线段为直径分别画小圆,设AB=a,那么⊙O的周长l=πa.
计算:(1)把AB分成两条相等的线段,每个小圆的周长;
(2)把AB分成三条相等的线段,每个小圆的周长l3=   ;
(3)把AB分成四条相等的线段,每个小圆的周长l4=   ;
(4)把AB分成n条相等的线段,每个小圆的周长ln=   .
结论:把大圆的直径分成n条相等的线段,以每条线段为直径分别画小圆,那么每个小圆周长是大圆周长的   .请仿照上面的探索方法和步骤,计算推导出每个小圆面积与大圆面积的关系.




2019年北师大版七年级上册数学《第4章 基本平面图形》单元测试卷
参考答案与试题解析
一.选择题(共15小题)
1.如图的四个图形和每一个图形相应的一句描述,其中所有图形都是画在同一个平面上.

①线段AB与射线MN不相交;②点C在线段AB上;③直线a和直线b不相交;④延长射线AB,则会通过点C.其中正确的语句的个数有(  )
A.0个 B.1个 C.2个 D.3个
【分析】根据直线、线段、射线的定义以及其性质分别判断得出即可.
【解答】解:①线段AB与射线MN不相交,根据图象可得出此选项正确;
②根据图象点C不在线段AB上,故此选项错误;
③根据图象可得出直线a和直线b会相交,故此选项错误;
④根据图象可得出应为延长线段AB,到点C,故此选项错误,
故正确的语句的个数是1个.
故选:B.
【点评】此题主要考查了直线、线段、射线的定义的应用,正确根据题意画出图形是解题关键.
2.如图,经过刨平的木板上的A,B两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是(  )

A.两点之间,线段最短
B.两点确定一条直线
C.垂线段最短
D.在同一平面内,过一点有且只有一条直线与已知直线垂直
【分析】根据“经过两点有且只有一条直线”即可得出结论.
【解答】解:∵经过两点有且只有一条直线,
∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.
故选:B.
【点评】本题考查了直线的性质,牢记“经过两点有且只有一条直线”是解题的关键.
3.如图,小红同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是(  )

A.两点之间,线段最短
B.两点确定一条直线
C.过一点,有无数条直线
D.连接两点之间的线段叫做两点间的距离
【分析】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.
【解答】解:∵用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,
∴线段AB的长小于点A绕点C到B的长度,
∴能正确解释这一现象的数学知识是两点之间,线段最短,
故选:A.

【点评】本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.
4.点A、B、C是同一直线上的三个点,若AB=8cm,BC=3cm,则AC=(  )
A.11cm B.5cm C.11cm或5cm D.11cm或3cm
【分析】分点C在线段AB上和在线段AB外两种情况讨论求解即可.
【解答】解:如图1,点C在线段AB上时,∵AB=8cm,BC=3cm,
∴AC=AB﹣BC=8﹣3=5cm,
如图2,点C在线段AB外时,AC=AB+BC=8+3=11cm,
所以,AC=5cm或11cm.
故选:C.

【点评】本题考查了两点间的距离,难点在于要分情况讨论.
5.矩形、菱形、正方形都具有的性质是(  )
A.对角线相等 B.对角线互相垂直
C.对角线互相平分 D.对角线平分对角
【分析】根据正方形的性质,菱形的性质及矩形的性质分别分析各个选项,从而得到答案.
【解答】解:A、对角线相等,菱形不具有此性质,故本选项错误;
B、对角线互相垂直,矩形不具有此性质,故本选项错误;
C、对角线互相平分,正方形、菱形、矩形都具有此性质,故本选项正确;
D、对角线平分对角,矩形不具有此性质,故本选项错误;
故选:C.
【点评】此题考查了矩形、菱形、正方形的对角线的性质,注意掌握正方形的对角线垂直平分且相等、矩形的对角线互相平分且相等、菱形的对角线互相垂直平分,正方形、矩形、菱形都具有的特征是对角线互相平分.
6.下列判断错误的是(  )
A.对角线相互垂直且相等的平行四边形是正方形
B.对角线相互垂直平分的四边形是菱形
C.对角线相等的四边形是矩形
D.对角线相互平分的四边形是平行四边形
【分析】根据平行四边形的判定方法、正方形的判定方法、矩形的判定方法以及菱形的判定方法逐项分析即可.
【解答】解:A、对角线相互垂直且相等的平行四边形是正方形,正确;
B、对角线相互垂直平分的四边形是菱形,正确;
C、对角线相等平分的四边形是矩形,错误;
D、对角线相互平分的四边形是平行四边形,正确;
故选:C.
【点评】本题考查了平行四边形、矩形、菱形、正方形的判定等内容,要求学生对这些基本的图形熟练掌握.
7.从一个多边形的任何一个顶点出发都只有5条对角线,则它的边数是(  )
A.6 B.7 C.8 D.9
【分析】根据多边形的对角线的定义可知,从n边形的一个顶点出发,可以引(n﹣3)条对角线,由此可得到答案.
【解答】解:设这个多边形是n边形.
依题意,得n﹣3=5,
解得n=8.
故这个多边形的边数是8.
故选:C.
【点评】本题考查了多边形的对角线,如果一个多边形有n条边,那么经过多边形的一个顶点所有的对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.
8.从n边形一个顶点出发,可以作(  )条对角线.
A.n B.n﹣1 C.n﹣2 D.n﹣3
【分析】根据多边形的对角线的方法,不相邻的两个定点之间的连线就是对角线,在n边形中与一个定点不相邻的顶点有n﹣3个.
【解答】解:n边形(n>3)从一个顶点出发可以引n﹣3条对角线.
故选:D.
【点评】本题主要考查了多边形的对角线的定义,是需要熟记的内容.
9.已知⊙O的半径为6cm,P为线段OA的中点,若点P在⊙O上,则OA的长(  )
A.等于6cm B.等于12cm C.小于6cm D.大于12cm
【分析】点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).
【解答】解:根据点和圆的位置关系,得OP=6,再根据线段的中点的概念,得OA=2OP=12.
故选:B.
【点评】注意点和圆的位置关系与数量之间的等价关系是解决问题的关键.
10.下列说法错误的是(  )
A.圆有无数条直径
B.连接圆上任意两点之间的线段叫弦
C.过圆心的线段是直径
D.能够重合的圆叫做等圆
【分析】根据直径、弧、弦的定义进行判断即可.
【解答】解:A、圆有无数条直径,故本选项说法正确;
B、连接圆上任意两点的线段叫弦,故本选项说法正确;
C、过圆心的弦是直径,故本选项说法错误;
D、能够重合的圆全等,则它们是等圆,故本选项说法正确;
故选:C.
【点评】本题考查圆的认识,学习中要注意区分:弦与直径,弧与半圆之间的关系.
11.如果两个圆心角相等,那么(  )
A.这两个圆心角所对的弦相等
B.这两个圆心角所对的弧相等
C.这两个圆心角所对的弦的弦心距相等
D.以上说法都不对
【分析】根据圆心角定理进行判断即可.
【解答】解:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等,所对的弦的弦心距相等.
故选:D.
【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.
12.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,则弦BC的长等于(  )

A.8 B.10 C.11 D.12
【分析】作直径CF,连结BF,先利用等角的补角相等得到∠DAE=∠BAF,然后再根据同圆中,相等的圆心角所对的弦相等得到DE=BF=6,再利用勾股定理,继而求得答案.
【解答】解:作直径CF,连结BF,如图,
则∠FBC=90°,
∵∠BAC+∠EAD=180°,
而∠BAC+∠BAF=180°,
∴∠DAE=∠BAF,
∴=,
∴DE=BF=6,
∴BC==8.
故选:A.

【点评】此题考查了圆周角定理、垂径定理、三角形中位线的性质以及勾股定理.注意掌握辅助线的作法.
13.用一把带有刻度的直角尺,(1)可以画出两条平行线;(2)可以画出一个角的平分线;(3)可以确定一个圆的圆心.以上三个判断中正确的个数是(  )
A.0个 B.1个 C.2个 D.3个
【分析】根据基本作图的方法,逐项分析,从而得出正确个数.
【解答】解:(1)任意画出一条直线,在直线的同旁作出两条垂线段,并且这两条垂线段相等.过这两条垂线段的另一端点画直线,与已知直线平行,正确;
(2)可先在这个角的两边量出相等的两条线段长,过这两条线段的端点向角的内部作垂线,过角的顶点和两垂线的交点的射线就是角的平分线,正确;
(3)可让直角顶点放在圆上,先得到直径,进而找到直径的中点就是圆心,正确.
故选:D.
【点评】本题考查带有刻度的直角尺的一些常用的用法.
14.尺规作图所用的作图工具是指(  )
A.刻度尺和圆规 B.不带刻度的直尺和圆规
C.刻度尺 D.圆规
【分析】尺是不带刻度的直尺,规是圆规.
【解答】解:尺规作图所用的作图工具是指不带刻度的直尺和圆规.
故选:B.
【点评】本题考查尺规作图的主要工具.
15.画∠AOB的平分线的方法步骤是:
①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;
②分别以M、N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;
③过点C作射线OC.射线OC就是∠AOB的角平分线.
请你说明这样作角平分线的根据是(  )
A.SSS B.SAS C.ASA D.AAS
【分析】先证明三角形全等,再利用全等的性质证明角相等.
【解答】解:从画法①可知OA=OB,
从画法②可知CM=CN,
又OC=OC,由SSS可以判断△OMC≌△ONC,
∴∠MOC=∠NOC,
即射线OC就是∠AOB的角平分线.
故选:A.

【点评】本题考查作图﹣基本作图、全等三角形的判定和性质,解题的关键是灵活应用所学知识解决问题,属于基础题.
二.填空题(共5小题)
16.在一条线段上取n个点,这n个点连同线段的两个端点一共有(n+2)个点,若以这(n+2)个点中任意两点为端点的线段共有45条,则n= 8 .
【分析】图形中共有(n+2)个点,以任意一点为端点的线段有n+1条,则有(n+1)(n+2)条,而每条线段是计算了2遍,因而共有(n+1)(n+2)条,据此即列出方程,从而求得n的值.
【解答】解:根据题意得:(n+1)(n+2)=45,
整理得n2+3n﹣88=0,
解得:n=8或n=﹣11(舍去).
故填8.

【点评】在线段的计数时,应注重分类讨论的方法计数,做到不遗漏,不重复.
17.种树时,只要定出两个树坑的位置,就能使同一行树坑在同一条直线上,其中的数学道理是: 两点确定一条直线 .
【分析】根据公理“两点确定一条直线”,来解答即可
【解答】解:∵只要定出两个树坑的位置,这条就确定了,
∴能使同一行树坑在同一条直线上.
故答案为:两点确定一条直线.
【点评】本题考查的是“两点确定一条直线”在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.
18.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是 n2+2n .

【分析】第1个图形是2×3﹣3,第2个图形是3×4﹣4,第3个图形是4×5﹣5,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是(n+1)(n+2)﹣(n+2)=n2+2n.
【解答】解:第一个是1×3,
第二个是2×4,
第三个是3×5,

第 n个是n?(n+2)=n2+2n
故答案为:n2+2n.
【点评】首先计算几个特殊图形,发现:数出每边上的个数,乘以边数,但各个顶点的重复了一次,应再减去.
19.过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是 八 边形.
【分析】根据n边形对角线公式,可得答案.
【解答】解:设多边形是n边形,由对角线公式,得
n﹣2=6.
解得n=8,
故答案为:八.
【点评】本题考查了多边形对角线,n边形过一个顶点的所有对角线公式是(n﹣2)条.
20.如图,CD是⊙O的直径,∠EOD=84°,AE交⊙O于点B,且AB=OC,则∠A的度数是 28° .

【分析】根据等腰三角形的性质,可得∠A与∠AOB的关系,∠BEO与∠EBO的关系,根据三角形外角的性质,可得关于∠A的方程,根据解方程,可得答案.
【解答】解:由AB=OC,得
AB=OB,
∠A=∠AOB.
由BO=EO,得
∠BEO=∠EBO.
由∠EBO是△ABO的外角,得
∠EBO=∠A+∠AOB=2∠A,
∠BEO=∠EBO=2∠A.
由∠DOE是△AOE的外角,得
∠A+∠AEO=∠EOD,
即∠A+2∠A=84°,
∠A=28°.
故答案为:28°.
【点评】本题考查了圆的认识,利用了等腰三角形的性质,利用三角形外角的性质得出关于∠A的方程是解题关键.
三.解答题(共3小题)
21.如图,C是线段AB外一点,按要求画图:
(1)画射线CB;
(2)反向延长线段AB;
(3)连接AC,并延长AC至点D,使CD=AC.

【分析】根据作图的步骤即可画出图形.
【解答】解:

【点评】本题考察了基本作图,注意在射线上截取一条线段等于已知线段,需要用圆规,作图时要保留作图痕迹.
22.提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?
探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
(1)当AP=AD时(如图②):

∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD.
∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,
∴S△CDP=S△CDA.
∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP
=S四边形ABCD﹣S△ABD﹣S△CDA
=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)
=S△DBC+S△ABC.
(2)当AP=AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
(3)当AP=AD时,S△PBC与S△ABC和S△DBC之间的关系式为: S△PBC=S△DBC+S△ABC ;
(4)一般地,当AP=AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
问题解决:当AP=AD(0≤≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为: S△PBC=S△DBC+S△ABC. .
【分析】(2)仿照(1)的方法,只需把换为;
(3)注意由(1)(2)得到一定的规律;
(4)综合(1)(2)(3)得到面积和线段比值之间的一般关系;
(5)利用(4),得到更普遍的规律.
【解答】解:(2)∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD.
又∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,
∴S△CDP=S△CDA.
∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP
=S四边形ABCD﹣S△ABD﹣S△CDA
=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)
=S△DBC+S△ABC.
∴S△PBC=S△DBC+S△ABC

(3)S△PBC=S△DBC+S△ABC;

(4)S△PBC=S△DBC+S△ABC;
∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD.
又∵PD=AD﹣AP=AD,△CDP和△CDA的高相等,
∴S△CDP=S△CDA
∴S△PBC=S四边形ABCD﹣S△ABP﹣S△CDP
=S四边形ABCD﹣S△ABD﹣S△CDA
=S四边形ABCD﹣(S四边形ABCD﹣S△DBC)﹣(S四边形ABCD﹣S△ABC)
=S△DBC+S△ABC.
∴S△PBC=S△DBC+S△ABC
问题解决:S△PBC=S△DBC+S△ABC.
【点评】注意总结相应规律,类似问题通常采用类比的方法求解.
23.如图,AB是⊙O的直径,把AB分成几条相等的线段,以每条线段为直径分别画小圆,设AB=a,那么⊙O的周长l=πa.
计算:(1)把AB分成两条相等的线段,每个小圆的周长;
(2)把AB分成三条相等的线段,每个小圆的周长l3= l ;
(3)把AB分成四条相等的线段,每个小圆的周长l4= l ;
(4)把AB分成n条相等的线段,每个小圆的周长ln= l .
结论:把大圆的直径分成n条相等的线段,以每条线段为直径分别画小圆,那么每个小圆周长是大圆周长的  .请仿照上面的探索方法和步骤,计算推导出每个小圆面积与大圆面积的关系.

【分析】把大圆的直径分成n条相等的线段,以每条线段为直径分别画小圆,那么每个小圆周长是ln=π(a)=l,即每个小圆周长是大圆周长的;根据圆的面积公式求得每个小圆的面积和大圆的面积后比较.
【解答】解:(2)l;
(3)l;
(4)l;;
每个小圆面积=π(?a)2=?,而大圆的面积=π(?a)2=πa2
即每个小圆的面积是大圆的面积的.
【点评】本题考查了圆的周长公式和圆的面积公式.