3.9 两条直线的位置关系 教案 (2)

文档属性

名称 3.9 两条直线的位置关系 教案 (2)
格式 zip
文件大小 328.9KB
资源类型 教案
版本资源 北京课改版
科目 数学
更新时间 2019-12-24 16:35:01

图片预览

文档简介

《两条直线的位置关系》教案
教学目标
1、经历观察、操作、推理、交流等过程,进一步发展空间观念、推理能力和有条理表达的能力.
2、在具体情景中了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等,并能解决一些实际问题.
教学重难点
教学重点:
1、余角、补角、对顶角的概念
2、理解等角的余角相等、等角的补角相等、对顶角相等.
教学难点:
理解等角的余角相等、等角的补角相等.判断是否是对顶角.
教学方法
观察、探索、归纳总结.
准备活动
在打桌球的时候,如果是不能直接的把球打入袋中,那么应该怎么打才能保证球能入袋呢?
教学过程
第一环节 情境引入
活动内容:搜集生活中常见的图片,让学生从中找出相交线和平行线.
第二环节 探索发现
内容一:观察图中各角与∠1之间的关系:
∠ADF+∠1=180
∠ADC+∠1=180
∠BDC+∠1=180
∠EDB+∠1=180
∠2=∠1
教学中要鼓励学生自己去寻找,但是不要求学生说出图中所有的角与∠1的关系.在对图中角的关系的充分讨论的基础上,概括出互为余角和互为补角的概念.
提醒学生:互为余角、互为补角仅仅表明了两个角之间的度量关系,并没有对其位置关系作出限制.(为下面的对顶角的学习作铺垫)
让学生探索出“同角或等角的余角相等,同角或等角的补角相等”的结论.鼓励学生用自己的语言表达,并说明理由.
内容二:
议一议:
(1)用剪刀剪东西的时候,哪对角同时变大或变小?
(2)如果将剪刀简单的表示为右图,那么∠1和∠2有什么位置关系?
(3)它们的大小有什么关系?能试着说明理由吗?
由此引出对顶角的概念和“对顶角相等 ”的结论.
第三环节 小诊所
活动内容:判断下列说法是否正确
1(1)300 ,700 与800 的和为平角,所以这三个角互余.( )
(2)一个角的余角必为锐角. ( )
(3)一个角的补角必为钝角. ( )
(4)900 的角为余角. ( )
(5)两角是否互补既与其大小有关又与其位置有关( )
2.你能举出生活中包含对顶角的例子吗?
3.下图中有对顶角吗?若有,请指出,若没有,请说明理由.
4.议一议:如上图所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数吗?你能说出所量角是多少度吗?你的根据是什么?
第四环节 课堂小结
小结:
熟记(1)余角、补角的概念.
(2)同角或等角的余角相等,同角或等角的补角相等.
(3)对顶角的概念和“对顶角相等”.
第五个环节 布置作业