三角形的面积
教学目标
1、运用已有的知识、转化的数学思想,推导出三角形的面积公式,并能正确计算三角形的面积。
2、通过三角形面积公式的推导,培养学生的合作、观察、分析、归纳、交流的能力和创新精神。
3、通过动手操作,和对图形的观察、比较、培养学生的形象思维和逻辑思维能力,发展学生空间观念。
教学重点难点
1、理解并掌握三角形面积的计算公式
2、理解三角形面积计算公式的推导过程
教学用具
学生准备同样大小的直角三角形两个、锐角三角形两个、钝角三角形两个、剪刀、尺子
教学过程
一、复习
1、复习平行四边形、长方形面积公式的推导方法
请同学们回忆一下前面我们学过的平行四边形的面积是怎样推导出来的?(学生口述)
2. 计算下面长方形和平行四边形的面积
二、创设情境
裁缝店的王阿姨接到一笔订货单:东风小学要在一年级新生中发展150名少先队员,需要做150条红领巾,要买多少布料呢?这可难坏了王阿姨,同学们,你们能帮她解决这个问题吗?怎么解决?
那么,做一条红领巾必须知道什么?(面积)
红领巾是什么形状的?(三角形)
怎样才能算出三角形的面积呢?这节课我们就来共同探究三角形面积的计算方法。(板书课题)
[设计意图]通过学生熟悉的情境,使学生产生解决问题的欲望,并能积极主动的投入到探究活动中。
三、探究新知
1.用数小格的方法计算三角形的面积
2.请同学们拿出准备的三角形,仿照我们推导平行四边形面积的方法,试着拼一拼,看能不能推导出三角形的面积公式。
动手前,注意老师提出的这几个问题:
A、你选择两个怎样的三角形拼图?能拼出什么图形?
B、拼出的图形的面积你会算吗?拼出的图形与原来的三角形有什么联系?(屏幕出示)
(1)学生分小组进行操作实践活动
(2)汇报交流操作结果(请学生将自己的拼图贴于黑板上,对照拼图进行汇报交流,不完整的地方,小组内其他同学补充。教师根据学生的汇报出示相应的课件)
拼法一:用两个完全一样的直角三角形拼成一个长方形,三角形的一条直角边(底)相当于长方形的长,另一条直角边(高)相当于长方形的宽,长方形的面积相当于三角形面积的两倍,因为长方形的面积=长×宽,所以,三角形的面积=底×高÷2。
拼法二:两个完全一样的锐角三角形拼成一个平行四边形,平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高,平行四边形的面积相当于三角形的2倍,平行四边形的面积=底×高,所以三角形的面积=底×高÷2。
拼法三、两个完全一样的钝角三角形拼成一个平行四边形。
通过动手我们发现,两个完全一样的三角形都可以拼成一个平行四边形(或长方形或正方形)这个平行四边形的底相当于三角形的底,平行四边形的高相当于三角形的高,因为每个三角形的面积等于拼成的平行四边形面积的一半,所以,推出: 三角形的面积=底×高÷2
3、 除了刚才我们用的三角形面积公式推导方法外,请同学们再用剪拼的方法进行推导。
(1)小组讨论:怎样剪拼可以推导出三角形的面积公式?
(2)交流汇报(请学生展示剪拼过程)
平行四边形的面积=底×高
三角形的面积=底×高÷24、老师还会一种推导方法,叫折叠法,看哪位同学最聪明,能用这种方法推导出三角形的面积公式来。
学生思考,得出结果,汇报交流并演示折叠过程。
5、教师小结:我们用拼图法、剪拼法、折叠法的方法把三角形转化成学过的图形,推导出了三角形的面积公式。那么,如果用字母a表示三角形的底,h表示三角形的高,S表示三角形的面积,你能用字母表示三角形的面积公式吗?
S=ah÷2(板书)
四、方法应用
1.出示例题:王阿姨计划做的红领巾的底是50㎝,高是20㎝,红领巾的面积是多少?
(1)学生尝试完成
(2)交流做法和结果
S=ah÷2
=50×20÷2
=1000÷2
=500㎝
2、一种零件有一面是三角形,三角形的底是5.6厘米,高是4厘米。这个三角形的面积是多少平方厘米?
3.思考题 下图中哪个三角形的面积与涂颜色的三角形的面积相等?为什么?你能在图中再画出一个与涂颜色的三角形的面积相等的三角形吗?试试看。
[设计意图]通过有层次的练习,使学生能够较好的巩固所学知识,开拓思维。
五、梳理知识,总结升华
谈话:这节课你有什么收获呢?