2019年苏科新版数学八年级上册《第2章 轴对称图形》单元测试卷
一.选择题(共15小题)
1.如图所示,在△ABC中,AC⊥BC,AE为∠BAC的平分线,DE⊥AB,AB=7cm,AC=3cm,则BD等于( )
A.1cm B.2cm C.3cm D.4cm
2.如图,△ABC中,∠C=90°,ED垂直平分AB,若AC=12,EC=5,且△ACE的周长为30,则BE的长为( )
A.5 B.10 C.12 D.13
3.已知等腰三角形的一边等于3,一边等于7,那么它的周长等于( )
A.13 B.13或17 C.17 D.14或17
4.如图,在正方形网格中,每个小正方形的边长都为1,点A、B都是格点(小正方形的顶点叫做格点),若△ABC为等腰三角形,且△ABC的面积为1,则满足条件的格点C有( )
A.0个 B.2个 C.4个 D.8个
5.如图,OB平分∠CBA,CO平分∠ACB,且MN∥BC,设AB=12,BC=24,AC=18,则△AMN的周长为( )
A.30 B.33 C.36 D.39
6.如图,已知△ABC是等边三角形,点B、C,D、E在同一直线上,且CG=CD,DF=DE,则∠E=( )
A.30° B.20° C.15° D.100°
7.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是( )
A.等腰三角形 B.等边三角形
C.不等边三角形 D.不能确定形状
8.已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②∠APO=∠DCO;③△OPC是等边三角形;④AB=AO+AP.其中正确的是( )
A.①③④ B.①②③ C.①③ D.①②③④
9.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到( )
A. B. C. D.
10.下列说法正确的是( )
A.能够完全重合的两个图形成轴对称
B.全等的两个图形成轴对称
C.形状一样的两个图形成轴对称
D.沿着一条直线对折能够重合的两个图形成轴对称
11.日常生活中,我们会看到很多标志,在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )
A. B. C. D.
12.从平面镜里看到背后墙上电子钟的示数如图所示,这时的正确时间是( )
A.21:05 B.21:15 C.20:15 D.20:12
13.如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1,还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2,按上述方法不断操作下去…经过第2018次操作后得到的折痕D2017E2017到BC的距离记为h2018,若h1=1,则h2018的值为( )
A.2﹣ B. C.1﹣ D.2﹣
14.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画( )条线段.
A.1 B.2 C.3 D.4
15.如图所示,欢欢首先将一张正方形的纸片按(2)、(3)、(4)的顺序三次折叠,然后沿第三次折痕剪下一个四边形,这个四边形一定是( )
A.平行四边形 B.矩形 C.菱形 D.正方形
二.填空题(共6小题)
16.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是 .
17.在△ABC中,∠BAC=α,边AB的垂直平分线交边BC于点D,边AC的垂直平分线交边BC于点E,连结AD,AE,则∠DAE的度数为 .(用含α的代数式表示)
18.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于D点.若BD平分∠ABC,则∠A= °.
19.如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是 .
20.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为 .
21.等边三角形是一个轴对称图形,它有 条对称轴.
三.解答题(共3小题)
22.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)说明BE=CF的理由;
(2)如果AB=5,AC=3,求AE、BE的长.
23.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.
(1)若BC=10,则△ADE周长是多少?为什么?
(2)若∠BAC=128°,则∠DAE的度数是多少?为什么?
24.如图,D、E分别是AB、AC的中点,CD⊥AB于D,BE⊥AC于E,求证:AC=AB.
2019年苏科新版数学八年级上册《第2章 轴对称图形》单元测试卷
参考答案与试题解析
一.选择题(共15小题)
1.如图所示,在△ABC中,AC⊥BC,AE为∠BAC的平分线,DE⊥AB,AB=7cm,AC=3cm,则BD等于( )
A.1cm B.2cm C.3cm D.4cm
【分析】根据角平分线上的点到角的两边的距离相等可得CE=DE,再利用“HL”证明Rt△ACE和Rt△ADE全等,根据全等三角形对应边相等可得AD=AC,然后利用BD=AB﹣AD代入数据进行计算即可得解.
【解答】解:∵AC⊥BC,AE为∠BAC的平分线,DE⊥AB,
∴CE=DE,
在Rt△ACE和Rt△ADE中,
,
∴Rt△ACE≌Rt△ADE(HL),
∴AD=AC,
∵AB=7cm,AC=3cm,
∴BD=AB﹣AD=AB﹣AC=7﹣3=4cm.
故选:D.
【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,熟记性质并准确识图是解题的关键.
2.如图,△ABC中,∠C=90°,ED垂直平分AB,若AC=12,EC=5,且△ACE的周长为30,则BE的长为( )
A.5 B.10 C.12 D.13
【分析】根据线段垂直平分线的性质得出AE=BE,求出BE长即可.
【解答】解:∵ED垂直平分AB,
∴BE=AE,
∵AC=12,EC=5,且△ACE的周长为30,
∴12+5+AE=30,
∴AE=13,
∴BE=AE=13,
故选:D.
【点评】本题考查了线段垂直平分线的性质,能熟记线段垂直平分线的性质的内容是解此题的关键,注意:线段垂直平分线上的点到线段两个端点的距离相等.
3.已知等腰三角形的一边等于3,一边等于7,那么它的周长等于( )
A.13 B.13或17 C.17 D.14或17
【分析】因为等腰三角形的两边分别为3和7,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.
【解答】解:当3为底时,其它两边都为7,7、7、3可以构成三角形,周长为17;
当7为底时,其它两边都为3,因为3+3=6<7,所以不能构成三角形,故舍去.
所以它的周长等于17.
故选:C.
【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
4.如图,在正方形网格中,每个小正方形的边长都为1,点A、B都是格点(小正方形的顶点叫做格点),若△ABC为等腰三角形,且△ABC的面积为1,则满足条件的格点C有( )
A.0个 B.2个 C.4个 D.8个
【分析】根据等腰三角形的性质和三角形的面积解答即可.
【解答】解:如图所示:因为△ABC为等腰三角形,且△ABC的面积为1,
所以满足条件的格点C有4个,
故选:C.
【点评】本题考查了等腰三角形的判定;熟练掌握等腰三角形的性质和三角形的面积是解决问题的关键
5.如图,OB平分∠CBA,CO平分∠ACB,且MN∥BC,设AB=12,BC=24,AC=18,则△AMN的周长为( )
A.30 B.33 C.36 D.39
【分析】根据BO平分∠CBA,CO平分∠ACB,且MN∥BC,可得出MO=MC,NO=NB,所以三角形AMN的周长是AB+AC.
【解答】解:∵BO平分∠CBA,CO平分∠ACB,
∴∠MBO=∠OBC,∠OCN=∠OCB,
∵MN∥BC,
∴∠MOB=∠OBC,∠NOC=∠OCB,
∴∠MBO=∠MOB,∠NOC=∠NCO,
∴MO=MB,NO=NC,
∵AB=12,AC=18,
∴△AMN的周长=AM+MN+AN=AB+AC=12+18=30.
故选:A.
【点评】本题主要考查学生对考查了等腰三角形的判定和性质以及平行线的性质等知识点的理解和掌握,难度不大,是基础知识要熟练掌握.
6.如图,已知△ABC是等边三角形,点B、C,D、E在同一直线上,且CG=CD,DF=DE,则∠E=( )
A.30° B.20° C.15° D.100°
【分析】由于△ABC是等边三角形,那么∠B=∠1=60°,而CD=CG,那么∠CGD=∠2,而∠1是△CDG的外角,可得∠1=2∠2,同理有∠2=2∠E,等量代换有4∠E=60°,解即可求∠E.
【解答】解:如右图所示,
∵△ABC是等边三角形,
∴∠B=∠1=60°,
∵CD=CG,
∴∠CGD=∠2,
∴∠1=2∠2,
同理有∠2=2∠E,
∴4∠E=60°,
∴∠E=15°.
故选:C.
【点评】本题考查了等边三角形的性质、等腰三角形的性质、三角形外角的性质,解题的关键是利用外角性质得出∠1=2∠2,∠2=2∠E.
7.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是( )
A.等腰三角形 B.等边三角形
C.不等边三角形 D.不能确定形状
【分析】先证得△ABE≌△ACD,可得AE=AD,∠BAE=∠CAD=60°,即可证明△ADE是等边三角形.
【解答】解:∵△ABC为等边三角形
∴AB=AC
∵∠1=∠2,BE=CD
∴△ABE≌△ACD
∴AE=AD,∠BAE=∠CAD=60°
∴△ADE是等边三角形.
故选:B.
【点评】此题主要考查学生对等边三角形的判定及三角形的全等等知识点的掌握.
8.已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②∠APO=∠DCO;③△OPC是等边三角形;④AB=AO+AP.其中正确的是( )
A.①③④ B.①②③ C.①③ D.①②③④
【分析】①利用等边对等角,即可证得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;
②因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断;
③证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;
④首先证明△OPA≌△CPE,则AO=CE,AC=AE+CE=AO+AP.
【解答】解:①如图1,连接OB,
∵AB=AC,AD⊥BC,
∴BD=CD,∠BAD=∠BAC=×120°=60°,
∴OB=OC,∠ABC=90°﹣∠BAD=30°
∵OP=OC,
∴OB=OC=OP,
∴∠APO=∠ABO,∠DCO=∠DBO,
∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°;
故①正确;
②由①知:∠APO=∠ABO,∠DCO=∠DBO,
∵点O是线段AD上一点,
∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,
故②不正确;
③∵∠APC+∠DCP+∠PBC=180°,
∴∠APC+∠DCP=150°,
∵∠APO+∠DCO=30°,
∴∠OPC+∠OCP=120°,
∴∠POC=180°﹣(∠OPC+∠OCP)=60°,
∵OP=OC,
∴△OPC是等边三角形;
故③正确;
④如图2,在AC上截取AE=PA,连接PB,
∵∠PAE=180°﹣∠BAC=60°,
∴△APE是等边三角形,
∴∠PEA=∠APE=60°,PE=PA,
∴∠APO+∠OPE=60°,
∵∠OPE+∠CPE=∠CPO=60°,
∴∠APO=∠CPE,
∵OP=CP,
在△OPA和△CPE中,
,
∴△OPA≌△CPE(SAS),
∴AO=CE,
∴AC=AE+CE=AO+AP;
故④正确;
本题正确的结论有:①③④
故选:A.
【点评】本题主要考查了等腰三角形的判定与性质、等边三角形的判定与性质以及全等三角形的判定与性质,正确作出辅助线是解决问题的关键.
9.将一张矩形的纸对折,然后用笔尖在上面扎出“B”,再把它铺平,你可见到( )
A. B. C. D.
【分析】认真观察图形,首先找出对称轴,根据轴对称图形的定义可知只有C是符合要求的.
【解答】解:观察选项可得:只有C是轴对称图形.
故选:C.
【点评】本题考查轴对称图形的定义,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴,仔细观察图形是正确解答本题的关键.
10.下列说法正确的是( )
A.能够完全重合的两个图形成轴对称
B.全等的两个图形成轴对称
C.形状一样的两个图形成轴对称
D.沿着一条直线对折能够重合的两个图形成轴对称
【分析】根据轴对称的定义:如果把一个图形沿一条直线对折,能与另一个图形完全重合,那么我们说这两个图形成轴对称,即可选出答案.
【解答】解:A、能够完全重合的两个图形叫做全等形,故此选项错误;
B、C、如右图可知,此两个选项错误;
D、沿着一条直线对折能够重合的两个图形成轴对称,此选项正确;
故选:D.
【点评】此题主要考查了轴对称的定义,关键是正确把握定义.
11.日常生活中,我们会看到很多标志,在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )
A. B. C. D.
【分析】结合轴对称图形的概念进行求解.
【解答】解:A、是轴对称图形,本选项符合题意;
B、不是轴对称图形,本选项不符合题意;
C、不是轴对称图形,本选项不符合题意;
D、不是轴对称图形,本选项不符合题意.
故选:A.
【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
12.从平面镜里看到背后墙上电子钟的示数如图所示,这时的正确时间是( )
A.21:05 B.21:15 C.20:15 D.20:12
【分析】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.
【解答】解:由图分析可得题中所给的“20:15”与“21:05”成轴对称,这时的时间应是21:05.
故选:A.
【点评】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.
13.如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1,还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2,按上述方法不断操作下去…经过第2018次操作后得到的折痕D2017E2017到BC的距离记为h2018,若h1=1,则h2018的值为( )
A.2﹣ B. C.1﹣ D.2﹣
【分析】根据中点的性质及折叠的性质可得DA=DA'=DB,从而可得∠ADA'=2∠B,结合折叠的性质可得∠ADA'=2∠ADE,可得∠ADE=∠B,继而判断DE∥BC,得出DE是△ABC的中位线,证得AA1⊥BC,得到AA1=2,求出h1=2﹣1=1,同理h2=2﹣,h3=2﹣×=2﹣,于是经过第n次操作后得到的折痕Dn﹣1En﹣1到BC的距离hn=2﹣,据此可得答案.
【解答】解:连接AA1.
由折叠的性质可得:AA1⊥DE,DA=DA1,
又∵D是AB中点,
∴DA=DB,
∴DB=DA1,
∴∠BA1D=∠B,
∴∠ADA1=2∠B,
又∵∠ADA1=2∠ADE,
∴∠ADE=∠B,
∴DE∥BC,
∴AA1⊥BC,
∴AA1=2,
∴h1=2﹣1=1,
同理,h2=2﹣,h3=2﹣×=2﹣
…
∴经过第n次操作后得到的折痕Dn﹣1En﹣1到BC的距离hn=2﹣.
∴h2018=2﹣,
故选:A.
【点评】本题考查了相似三角形的判定和性质,三角形中位线的性质,平行线等分线段定理,找出规律是解题的关键.
14.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画( )条线段.
A.1 B.2 C.3 D.4
【分析】根据轴对称的性质画出所有线段即可.
【解答】解:如图所示,共有4条线段.
故选:D.
【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.
15.如图所示,欢欢首先将一张正方形的纸片按(2)、(3)、(4)的顺序三次折叠,然后沿第三次折痕剪下一个四边形,这个四边形一定是( )
A.平行四边形 B.矩形 C.菱形 D.正方形
【分析】结合空间思维,分析折叠的过程及剪菱形的位置,易知展开的形状.
【解答】解:由图形可得出:剪掉的三角形是4个直角三角形,故得到一个菱形.
故选:C.
【点评】本题主要考查了学生的立体思维能力即操作能力.错误的主要原因是空间观念以及转化的能力不强,缺乏逻辑推理能力,需要在平时生活中多加培养.
二.填空题(共6小题)
16.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是 42 .
【分析】过O作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线性质求出OE=OD=OF=4,根据△ABC的面积等于△ACO的面积、△BCO的面积、△ABO的面积的和,即可求出答案.
【解答】解:
过O作OE⊥AB于E,OF⊥AC于F,连接OA,
∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,
∴OE=OD,OD=OF,
即OE=OF=OD=4,
∴△ABC的面积是:S△AOB+S△AOC+S△OBC
=×AB×OE+×AC×OF+×BC×OD
=×4×(AB+AC+BC)
=×4×21=42,
故答案为:42.
【点评】本题考查了角平分线性质,三角形的面积,主要考查学生运用定理进行推理的能力.
17.在△ABC中,∠BAC=α,边AB的垂直平分线交边BC于点D,边AC的垂直平分线交边BC于点E,连结AD,AE,则∠DAE的度数为 2α﹣180°或180°﹣2α .(用含α的代数式表示)
【分析】分两种情况进行讨论,先根据线段垂直平分线的性质,得到∠B=∠BAD,∠C=∠CAE,进而得到∠BAD+∠CAE=∠B+∠C=180°﹣α,再根据角的和差关系进行计算即可.
【解答】解:分两种情况:
①如图所示,当∠BAC≥90°时,
∵DM垂直平分AB,
∴DA=DB,
∴∠B=∠BAD,
同理可得,∠C=∠CAE,
∴∠BAD+∠CAE=∠B+∠C=180°﹣α,
∴∠DAE=∠BAC﹣(∠BAD+∠CAE)=α﹣(180°﹣α)=2α﹣180°;
②如图所示,当∠BAC<90°时,
∵DM垂直平分AB,
∴DA=DB,
∴∠B=∠BAD,
同理可得,∠C=∠CAE,
∴∠BAD+∠CAE=∠B+∠C=180°﹣α,
∴∠DAE=∠BAD+∠CAE﹣∠BAC=180°﹣α﹣α=180°﹣2α.
故答案为:2α﹣180°或180°﹣2α.
【点评】本题考查了三角形内角和定理,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.
18.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于D点.若BD平分∠ABC,则∠A= 36 °.
【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=BD,根据等边对等角可得∠A=∠ABD,然后表示出∠ABC,再根据等腰三角形两底角相等可得∠C=∠ABC,然后根据三角形的内角和定理列出方程求解即可.
【解答】解:∵AB=AC,
∴∠C=∠ABC,
∵AB的垂直平分线MN交AC于D点.
∴∠A=∠ABD,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠C=2∠A=∠ABC,
设∠A为x,
可得:x+x+x+2x=180°,
解得:x=36°,
故答案为:36
【点评】此题考查了线段垂直平分线的性质以及等腰三角形的性质.注意垂直平分线上任意一点,到线段两端点的距离相等.
19.如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是 ① .
【分析】入射光线与水平线的夹角等于反射光线与水平线的夹角,动手操作即可.
【解答】解:如图,求最后落入①球洞;
故答案为:①.
【点评】本题主要考查了生活中的轴对称现象;结合轴对称的知识画出图形是解答本题的关键.
20.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为 55° .
【分析】根据轴对称的性质可得∠B′OG=∠BOG,再根据∠AOB′=70°,可得出∠B′OG的度数.
【解答】解:根据轴对称的性质得:∠B′OG=∠BOG
又∠AOB′=70°,可得∠B′OG+∠BOG=110°
∴∠B′OG=×110°=55°.
【点评】本题考查轴对称的性质,在解答此类问题时要注意数形结合的应用.
21.等边三角形是一个轴对称图形,它有 3 条对称轴.
【分析】根据轴对称图形和对称轴的概念求解.
【解答】解:等边三角形是一个轴对称图形,它有3条对称轴.
故答案为:3.
【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
三.解答题(共3小题)
22.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)说明BE=CF的理由;
(2)如果AB=5,AC=3,求AE、BE的长.
【分析】(1)连接BD,CD,由AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,根据角平分线的性质,即可得DE=DF,又由DG⊥BC且平分BC,根据线段垂直平分线的性质,可得BD=CD,继而可证得Rt△BED≌Rt△CFD,则可得BE=CF;
(2)首先证得△AED≌△AFD,即可得AE=AF,然后设BE=x,由AB﹣BE=AC+CF,即可得方程5﹣x=3+x,解方程即可求得答案.
【解答】(1)证明:连接BD,CD,
∵AD平分∠BAC,DE⊥AB,DF⊥AC,
∴DE=DF,∠BED=∠CFD=90°,
∵DG⊥BC且平分BC,
∴BD=CD,
在Rt△BED与Rt△CFD中,
,
∴Rt△BED≌Rt△CFD(HL),
∴BE=CF;
(2)解:在△AED和△AFD中,
,
∴△AED≌△AFD(AAS),
∴AE=AF,
设BE=x,则CF=x,
∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,
∴5﹣x=3+x,
解得:x=1,
∴BE=1,AE=AB﹣BE=5﹣1=4.
【点评】此题考查了角平分线的性质、线段垂直平分线的性质以及全等三角形的判定与性质.此题难度适中,解题的关键是准确作出辅助线,利用方程思想与数形结合思想求解.
23.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.
(1)若BC=10,则△ADE周长是多少?为什么?
(2)若∠BAC=128°,则∠DAE的度数是多少?为什么?
【分析】(1)根据垂直平分线性质得AD=BD,AE=EC.所以△ADE周长=BC;
(2)∠DAE=∠BAC﹣(∠BAD+∠CAE).根据三角形内角和定理及等腰三角形性质求解.
【解答】解:(1)C△ADE=10.(1分)
∵AB、AC的垂直平分线分别交BC于D、E,
∴AD=BD,AE=CE.(3分)
C△ADE=AD+DE+AE=BD+DE+CE=BC=10.(4分)
(2)∠DAE=76°.(5分)
∵AB、AC的垂直平分线分别交BC于D、E,
∴AD=BD,AE=CE.
∴∠B=∠BAD,∠C=∠CAE.
∵∠BAC=128°,
∴∠B+∠C=52°.(7分)
∴∠DAE=∠BAC﹣(∠BAD+∠CAE)
=∠BAC﹣(∠B+∠C)=76°.(8分)
【点评】此题考查了线段垂直平分线的性质、三角形内角和定理、等腰三角形性质等知识点,渗透了整体求值的数学思想方法,难度中等.
24.如图,D、E分别是AB、AC的中点,CD⊥AB于D,BE⊥AC于E,求证:AC=AB.
【分析】作辅助线:连接BC,由CD垂直于AB,且D为AB中点,即CD所在直线为AB的垂直平分线,根据线段垂直平分线上的点到线段两端点的距离相等,得到AC=BC,又E为AC中点,且BE垂直于AC,即BE所在的直线为AC的垂直平分线,同理可得BC=AB,等量代换即可得证.
【解答】证明:如图,连接BC
∵CD⊥AB于D,D是AB的中点,即CD垂直平分AB,
∴AC=BC(中垂线的性质),
∵E为AC中点,BE⊥AC,
∴BC=AB(中垂线的性质),
∴AC=AB.
【点评】本题主要考查了中垂线的性质.做这类题,要学会作辅助线,以便使解题更简便.