第二章 实数
2.3立方根
教学设计
本节课设计了六个教学环节:第一环节:复习引入、类比学习;第二环节:尝试反馈,巩固练习;第三环节:初步探究;第四环节:深入探究;第六环节:课时小结;第七环节:作业布置
第一环节:复习引入、类比学习
提问:(1)什么叫一个数a的平方根?如何用符号表示数a(a≥0)的平方根?
(2)正数的平方根有几个?它们之间的关系是什么?负数有没有平方根?0的平方根是什么?
(3)平方和开平方运算有何关系?
(4)算术平方根和平方根有何区别与联系?
强调:一个正数的平方根有两个,且互为相反数;一个负数没有平方根;0的平方根是0.
(5)为了解决前面情景中的问题,需要引入一个新的运算,你将如何定义这个新运算?
类比得出概念
1.一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(也叫做二次方根).
2.一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(cube root, 也叫做三次方根).如:2是8的立方根,,0是0的立方根.
目的:学生通过回顾上节课的学习内容,为进一步研究立方根的概念及性质做好铺垫,同时突出平方根与立方根的对比,以利于弄清两者的区别和联系.
效果:复习引入既复习了平方根的知识,又利于学生用类比学习法学习立方根知识.
3在上面的基础上明晰下列内容,对知识进行梳理
每个数a都只有一个立方根,记为“”,读作“三次根号a”.例如x3=7时,x是7的立方根,即=x;与数的平方根的表示比较,数的立方根中根号前没有“±”符号,但根指数3不能省略.
效果:学生通过类比学习,初步掌握立方根的概念,能用符号语言表示一个数的立方根.
第二环节:尝试反馈,巩固练习
内容:
例1求下列各数的立方根:
(1); (2) ; (3) ; (4) ; (5).
解:(1)因为,所以的立方根是,即;
(2)因为,所以的立方根是,即;
(3)因为,所以的立方根是,即;
(4)因为,所以的立方根是,即;
(5)的立方根是.
例2 求下列各式的值:
(1) (2) (3); (4).
解:(1)=; (2)=;
(3)=; (4)=8
反馈练习
1.求下列各数的立方根:
第三环节:初步探究;
1.通过上面的计算结果,你发现了什么规律?
目的:例1着眼于弄清立方根的概念,因此这里不仅用立方的方法求立方根,而且书写上采用了语言叙述和符号表示互相补充的做法,学生在熟练以后可以简化写法.例2则巩固立方根的计算,引导学生思考立方根的性质.
效果:学生通过练习掌握立方根的概念和计算,通过对计算结果的分析得出立方根的性质,若学生不能发现规律,教师可以再给出几个例子,如:引导学生观察被开方数、根指数及运算结果之间的关系,从而得出立方根的性质;也可以安排学生分小组讨论,通过交流,展示学生发现的规律;若学生的讨论不够深入,可由教师补充得出结论.
2议一议:
(1)正数有几个立方根?
(2)0有几个立方根
(3)负数呢?
意图:提问,是为了指出平方根与立方根的对比,以利于弄清两者的区别和联系.
第四环节:深入探究
想一想:
(1)表示a的立方根,那么等于什么?呢?
(2)与有何关系?
目的:明晰 =a,=a
说明:若学生通过上面的计算得出了立方根的性质,可以直接展示学生的成果;若没有得出结果,可以引导学生分析,如果=a,那么x就是a的立方根,即x=,所以==a, 同样,根据定义,是的a三次方,所以的立方根就是a, 即,=.
第五环节 课时小结
请思考下列问题
1.什么叫一个数的立方根?怎样用符号表示数a的立方根?a的取值范围是什么?
如果一个数的立方等于a,这个数就叫做a的立方根,用符号表示, a为任意的数。
2. 数的立方根与数的平方根有什么区别?
正数只有一个正的立方根但有两个互为相反数的平方根,负数有一个负的立方根,但没有平方根。
3.求一个数的立方根可以通过什么运算来求?
求一个数的立方根,可以通过立方运算来求。
4.在学习中应注意以下5点:
(1)符号中根指数“3”不能省略;
(2)对于立方根,被开方数没有限制,正数、零、负数都有一个立方根;
(3)灵活运用公式:()3=a, ,=;
(4)立方与开立方也互为逆运算.我们可以用立方运算求一个数的立方根,或检验一个数是不是另一个数的立方根.
目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.
效果:通过小结,学生进一步加深了对类比学习方法的感受,对所学的知识进行了梳理,学习更有条理性.
第七环节:作业布置
课本习题2.3 第1、2、4题