第六章第1节 行星的运动 教案

文档属性

名称 第六章第1节 行星的运动 教案
格式 zip
文件大小 373.5KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 物理
更新时间 2019-12-29 15:04:32

图片预览

文档简介










行星的运动
【三维目标】
(一)知识与技能
1.了解地心说和日心说的基本内容。
2.明确开普勒三大定律,能应用三定律分析问题。
(二)过程与方法
1.认识物理实验在物理学发展过程中的重要作用。
2.了解科学研究方法对人类认识自然的重要作用。
(三)情感态度与价值观
1.通过开普勒行星运动定律的建立过程,渗透科学发现的方法论教育。
2.通过人类对行星运动规律认识过程的曲折与艰辛,学习科学家们实事求是、尊重客观事实、敢于坚持真理的科学精神。
【教学重点】
对开普勒三大定律的理解。
【教学难点】
1.开普勒三大定律的适用范围。
2.对开普勒第三定律中k的理解。
【课时安排】
1课时
【教学过程】
一、新课引入
1.故事导入
《天问》是战国时期楚国伟大诗人屈原的佳作,屈原对茫茫宇宙提出了一系列问题:

“遂古之初,谁传道之?
上下未形,何由考之?
……
夜光何德,死则又育?
厥利维何,而顾菟在腹?”
这些都反映了人类对星空的向往,体现了人类了解自然奥秘的渴望。
面对浩瀚的星空,哪里才是宇宙的中心?“地心说”“日心说”孰是孰非?
2.情景导入
太阳每天东升西落;月亮由东向西运行,有时弯如镰,有时圆如盘,每月变化一次;天上的星星有的看起来不动,有的如闪电划过夜空,日月星辰的这些运动,人们从遥远的古代就注意了。但是,日月交替,斗转星移,天体的运动遵循什么规律?浩瀚星空,哪里才是宇宙的中心?从这一节开始,我们将学习这些规律。

3.复习导入
复习旧知:
圆周运动的基本公式
匀速圆周运动的特点:速率、角速度不变,速度、加速度、合外力大小不变,方向时刻变化。合外力就是向心力,它只改变速度方向。
非匀速圆周运动:合外力一般不是向心力,它不仅要改变物体速度大小(切向分力),还要改变速度方向(向心力)。
生活中的圆周运动
很多天体的运动就是圆周运动,在学习中我们将应用圆周运动的知识解决天体运动的问题。本节课我们先学习:行星的运动。
二、新课讲解
(一)“地心说”和“日心说”的发展过程
课件展示:
在浩瀚的宇宙中,存在着无数大小不一、形态各异的星球,而这些天体是如何运动的呢?在古代,人类最初通过直接的感性认识,建立了“地心说”的观点,认为地球是静止不动的,而太阳和月亮绕地球转动。因为“地心说”比较符合人们的日常经验,太阳总是从东边升起,从西边落下,好像太阳绕地球转动。正好,“地心说”的观点也符合宗教神学关于地球是宇宙中心的说法,所以 “地心说”统治了人们很长时间。但是随着人们对天体运动的不断研究,发现“地心说”所描述的运动不仅复杂而且问题很多。如果把地球从天体运动的中心位置移到一个普通的、绕太阳运动的行星的位置,换一个角度来考虑天体的运动,许多问题都可以解决,行星运动的描述也变得简单了。
随着世界航海事业的发展,人们希望借助星星的位置为船队导航,因而对行星的运动观测越来越精确。再加上第谷等科学家经过长期观测及记录的大量观测数据,用托勒密的“地心说”模型很难得出完美的解答。当时,哥伦布和麦哲伦的探险航行已经使不少人相信地球并不是一个平台,而是一个球体,哥白尼就开始推测地球是不是每天围绕自己的轴线旋转一周呢?他假设地球并不是宇宙的中心,它与其他行星都是围绕着太阳做匀速圆周运动,这就是“日心说”的模型。用“日心说”能较好地和观测的数据相符合,但它的思想几乎在一个世纪中被忽略,很晚才被人们接受。原因有:(1)“日心说”只是一个假设。利用这个“假设”,行星运动的计算比“地心说”容易得多。但著作中有很不精确的数据。根据这些数据得出的结果不能很好地跟行星位置的观测结果相符合。(2)当时的欧洲的统治者还是教会,把哥白尼的学说称为“异端学说”,因为它不符合教会的利益,致使这个正确的观点被推迟一个世纪才被人们所接受。
德国的物理学家开普勒继承和总结了他的导师第谷的全部观测资料及观测数据,也是以行星绕太阳做匀速圆周运动的模型来思考和计算的,但结果总是与第谷的观测数据有8′的角度误差。当时公认的第谷的观测误差不超过2′。开普勒想,很可能不是匀速圆周运动。在这个大胆思路下,开普勒又经过四年多的刻苦计算,先后否定了19种设想,最后终于计算出行星是绕太阳运动的,并且运动轨迹为椭圆,证明了哥白尼的“日心说”是正确的,并总结为行星运动三定律。
通过观看上述材料及课本内容,要求学生解决以下问题:
1.在古代,人们对天体的运动的认识有哪几种学说?
2.各个学说的内容是怎样的?代表人物是谁?
3.哪种学说更先进?用现在的观点,如何认识这两种学说?
4.是哪位科学家否定了古人的观点?他发现了什么规律?
学生思考、交流后总结出结论:
1.地心说:地球是静止不动的,地球是宇宙的中心。
代表人物:托勒密(古希腊)。

托勒密(Ptolemy,90-168)
地心说符合人们的直接经验,同时也符合势力强大的宗教神学关于地球是宇宙中心的认识,故地心说一度占据了统治地位。
2.日心说:太阳是静止不动的,地球和其他行星都绕太阳运动。
代表人物:哥白尼。

哥白尼(Nicolaus Copenicus,1473-1543)
3.日心说能更完美地解释天体的运动。
古代的两种学说都不完善,因为太阳、地球等天体都是运动的。鉴于当时对自然科学的认识能力,日心说比地心说更先进。
4.开普勒否定了古人认为天体做匀速圆周运动的观点,他发现了行星的运动规律。
(二)开普勒运动定律
1.第谷的观测
第谷(1564-1601)是丹麦的天文学家、出色的观测家,历时二十年观测,记录了行星、月亮、彗星的位置。第谷本人虽然没有描绘出行星运动的规律,但他积累的资料为开普勒的研究提供了坚实的基础。
2.开普勒对行星运动的描述
开普勒(1571-1630)是德国的天文学家、数学天才。开普勒与第谷一起工作了十八个月后,第谷去世了,开普勒以全部的精力整理了第谷的观测资料,在哥白尼学说的基础上又迈进了一步,于1609年在他的著作《新天文学》中提出了著名的三大定律中的前两条,十年后,又提出了第三条定律。
教师活动:
1.出示行星运动的挂图。
2.放有关行星运动的录像。
通过放录像,让同学能看到三维的立体画面,让同学们的感性认识又提高一步。
课件展示:
开普勒行星运动的规律。
开普勒第一定律:所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。如图所示:

说明:该定律又叫椭圆轨道定律,行星与太阳间的距离一直在变。
开普勒第二定律:对于任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。如图所示。

说明:该定律又叫面积定律。
开普勒第三定律:所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等。
说明:该定律又叫周期定律。数学表达式:=k,或者,其中a为椭圆轨道的半长轴,T为公转周期。

实践拓展
实际上,多数行星绕太阳运动的轨道与圆十分接近,所以在中学阶段的研究中能够按圆处理,那么开普勒三大定律应该如何表述?
引导学生思考,讨论。
明确:
第一定律:多数行星绕太阳运动的轨道十分接近圆,太阳处在圆心。
第二定律:对某一行星来说,它绕太阳做圆周运动的角速度(或线速度大小)不变,即行星做匀速圆周运动。
第三定律:所有行星轨道半径的三次方跟它公转周期的二次方的比值都相等。
设计意图:通过该实践拓展使学生了解处理物理问题的一般方法:抓住主要矛盾,忽略次要因素,提高学生逻辑思维能力及归纳总结能力。
疑难探究
疑难点一:开普勒第三定律中的k如何理解?它由什么因素决定?
疑难点二:开普勒三定律是通过研究行星运动的规律得出的,那么卫星绕行星运动是否也遵守这些规律呢?如果遵守该如何表述?
疑难点三:我们通常将行星的轨道近似为圆,这样合理吗?
释疑1:比值k是一个与行星无关的常量,只跟行星所围绕的天体有关,即由中心天体决定,因此对于绕同一天体运行的行星此比值是相同的。开普勒第三定律也适用于卫星绕行星的运动,这时的比值是与行星无关的常量。
此结论可由下题得出:
下表所给出的是太阳系中八大行星绕太阳做椭圆运动的平均轨道半径的数值和周期的数值。从表中任意选择三个行星验证开普勒定律,并计算常量k=的值。
行星 平均轨道半径(m) 周期(s)
水星 5.79×1010 7.60×106
金星 1.08×1011 1.94×107
地球 1.49×1011 3.16×107
火星 2.28×1011 5.94×107
木星 7.78×1011 3.74×108
土星 1.43×1012 9.30×108
天王星 2.87×1012 2.66×109
海王星 4.50×1012 5.20×109
由学生自己动手计算,可提高学生动手计算的能力,并加深k的决定因素的理解。通过计算得出k值近似相等,得出k由中心天体来决定。
释疑2:研究表明开普勒三定律同样适用于卫星绕行星的运动,即卫星绕行星运动的轨道是椭圆,行星位于椭圆的一个焦点上;行星与卫星的连线在相等的时间内扫过的面积相等;同一行星的卫星轨道半长轴的三次方跟运转周期平方的比值都相等。(只不过此时的=k′中的恒量k′与行星中的比值不同)
释疑3:经观测,多数大行星的轨道十分接近圆,所以中学阶段的研究中可以按圆处理。
总结:开普勒定律是对行星绕太阳运动规律的总结,该结论对卫星绕行星的运动情况也成立。对于同一行星的不同卫星,圆轨道半径的三次方与运动周期的二次方之比等于常量,且该常量与卫星无关。
注意:在开普勒第三定律=k中,要注意a是椭圆半长轴,不是飞船到地球的距离。
三、课堂小结
通过本节课的学习,我们了解和知道了:
1.“地心说”和“日心说”两种不同的观点及发展过程。
2.开普勒行星运动规律
四、布置作业
1.阅读有关对行星运动的认识的发展史。
2.把月球及绕地球的同步卫星(周期与地球自转周期相同)看作绕地球做匀速圆周运动,试计算一下月球与同步卫星到地面中心的距离比。
五、板书设计
行星的运动
一、古代天体运动的学说
二、开普勒行星运动定律
六、活动与探究
课题:从季节的变化上证明行星绕太阳的运动是椭圆。
在二十四节气里,春分、夏至、秋分、冬至将一年分为春夏秋冬四季,试根据相关知识说明为什么秋冬两季比春夏两季要少几天。(春分、秋分是太阳直射赤道;夏至是太阳直射北回归线,冬至是太阳直射南回归线)
思路:从地球绕太阳的运动规律入手,明确四季交替时太阳与地球的相对位置,建立起空间图景,根据春分、夏至、秋分、冬至的规定和物体的运动规律进行论证。

论证:
假设(1):地球绕太阳做匀速圆周运动,根据春分、夏至、秋分、冬至的规定,建立如图所示的空间关系。因为南北回归线相对于赤道对称,根据圆周运动的知识,可知从冬至到春分和从春分到夏至的运动时间应该相等,即秋冬两季和春夏两季的时间应相等,但事实是秋冬两季比春夏两季时间要短,说明地球绕太阳的运动不是匀速圆周运动。既然不是圆周运动,那是什么运动呢?
假设(2):地球绕太阳做椭圆运动,而太阳位于椭圆的一个焦点上,建立如图所示的空间关系。根据曲线运动的受力特点,地球必受太阳的引力作用,当地球从冬至到春分再到夏至的过程中,太阳对地球的引力要做负功,因为引力的方向与运动方向的夹角大于90°,速度减小,所以v冬至>v夏至,而春夏两季和秋冬两季所走的路程基本相等,速度不同,所以时间不同,由于地球在秋冬两季时运动速度大,所以时间要短些。春夏两季一般在186天左右,而秋冬两季只有179天左右。

【教学后记】