沪科版九年级上期末模拟检测试卷1(九上-九下1章)
姓名:__________班级:__________考号:__________
题号
一
二
三
总分
得分
、选择题(本大题共12小题,每小题4分,共48分。在每小题给出的四个选项中,只有一个选项是符合题目要求的)
二次函数y=kx2+2x+1(k<0)的图象可能是( )
A. B. C. D.
果以的速度向水箱进水,可以注满.为了赶时间,现增加进水管,使进水速度达到
,那么此时注满水箱所需要的时间与之间的函数关系为( )
A. B. C. D.
如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是( )
A.130° B.120° C.110° D.100°
如果∠a是等边三角形的一个内角,那么cosa的值等于( ).
A. B. C. D.
抛物线y=﹣(x+)2﹣3的顶点坐标是( )
A.(,﹣3) B.(﹣,﹣3) C.(,3) D.(﹣,3)
如图,已知D、E分别是△ABC中AB、AC边上的点,DE∥BC且,△ADE的周长2,则△ABC的周长为()
A.4 B.6 C.8 D.18
如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为( )
A.1 B.3 C.5 D.1或5
已知E(-4,2),F(-1,-1),以原点O为位似中心,按相似比2∶1把△EFO放大,则点E的对应点E′的坐标为( )
A.(2,-1)或(-2,1) B.(8,-4)或(-8,4) C.(2,-1) D.(8,-4)
下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是( )
A.y=﹣3x+2 B.y=2x+1 C.y=2x2+1 D.y=﹣
已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是( )
A.当a=1时,函数图象过点(﹣1,1)
B.当a=﹣2时,函数图象与x轴没有交点
C.若a>0,则当x≥1时,y随x的增大而减小
D.若a<0,则当x≤1时,y随x的增大而增大
如图,平面直角坐标系xOy中,矩形OABC的边OA.OC分别落在x、y轴上,点B坐标为(6,4),反比例函数y=的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是( )
A. B. C. D.
如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为( )
A. B. C. D.
、填空题(本大题共6小题,每小题4分,共24分)
若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的 倍.
写出一个y关于x的二次函数的解析式,且它的图象的顶点在y轴上:______.
如图,中,,,若把绕边所在直线旋转一周,则所得几何体的表面积为________(结果保留).
抛物线y=ax2+bx+c经过点A(﹣3,0)、B(4,0)两点,则关于x的一元二次方程a(x﹣1)2+c=b﹣bx的解是 .
如图,过原点的直线与反比例函数y=(k>0)的图象交于A,B两点,点A在第一象限.点C在x轴正半轴上,连结AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B作AE的垂线,垂足为E,连结DE.若AC=3DC,△ADE的面积为8,则k的值为 .
如图,边长为3的正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG,EF交AD于点H,那么DH的长是 .
、解答题(本大题共8小题,共78分)
如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.
(1)在图中画出以AB为底、面积为12的等腰△ABC,且点C在小正方形的顶点上;
(2)在图中画出平行四边形ABDE,且点D和点E均在小正方形的顶点上,tan∠EAB=,连接CD,请直接写出线段CD的长.
如图,已知:AB是⊙O的弦,过点B作BC⊥AB交⊙O于点C,过点C作⊙O的切线交AB的延长线于点D,取AD的中点E,过点E作EF∥BC交DC的延长线于点F,连接AF并延长交BC的延长线于点G.
求证:
(1)FC=FG;
(2)AB2=BC?BG.
科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):
温度/℃
……
-4
-2
0
2
4
4.5
……
植物每天高度增长量/mm
……
41
49
49
41
25
19.75
……
由这些数据,科学家推测出植物每天高度增长量是温度的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.
(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;
(2)温度为多少时,这种植物每天高度的增长量最大?
(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度应该在哪个范围内选择?请直接写出结果.
如图,AB是⊙O的直径,AC是上半圆的弦,过点C作⊙O的切线DE交AB的延长线于点E,过点A作切线DE的垂线,垂足为D,且与⊙O交于点F,设∠DAC,∠CEA的度数分别是α,β.
(1)用含α的代数式表示β,并直接写出α的取值范围;
(2)连接OF与AC交于点O′,当点O′是AC的中点时,求α,β的值.
如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.
(1)分别求出一次函数与反比例函数的表达式;
(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.
如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.
(1)求∠BCD的度数.
(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20°≈0.36,tan18°≈0.32)
如图,在平面直角坐标系中,边长为2的正方形OABC的顶点A.C分别在x轴、y轴的正半轴上,二次函数的图象经过B、C两点.
(1)求该二次函数的解析式;
(2)将该二次函数图象向下平移几个单位,可使平移后所得图象经过坐标原点?直接写出平移后所得图象与x轴的另一个交点的坐标.
如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,设运动时间为x.
(1)当x为何值时,PQ∥BC;
(2)当,求的值;
(3)△APQ能否与△CQB相似?若能,求出AP的长;若不能,请说明理由.
答案解析
、选择题
【考点】二次函数的图象.
【分析】由图象判定k<0,可以判断抛物线对称轴的位置,抛物线与y轴的交点位置,选择符合条件的选项.
解:因为二次函数y=kx2+2x+1(k<0)的图象开口向下,过点(0,1),对称轴x=﹣>0,
观察图象可知,符合上述条件的只有C.故选C.
【点评】应熟练掌握二次函数y=ax2+bx+c的图象有关性质:开口方向、顶点坐标、对称轴.
【考点】反比例函数的应用
【分析】以12m3/h的速度向水箱进水,5h可以注满,求出水箱的容量,然后根据注满水箱所需要的时间t(h)= 可得出关系式.
解:由题意得:水箱的容量=12m3/h×5h=60m3.
∴注满水箱所需要的时间t(h)与Q(m3/h)之间的函数关系为t=.
故选:A.
【点睛】本题考查了根据实际问题列反比例函数关系式,属于应用题,难度一般,解答本题的关键是首先得出水箱的容量.
【考点】圆内接四边形的性质;圆周角定理.
【分析】先根据圆内接四边形的性质得到∠D=180°﹣∠B=50°,然后根据圆周角定理求∠AOC.
解:∵∠B+∠D=180°,
∴∠D=180°﹣130°=50°,
∴∠AOC=2∠D=100°.
故选D.
【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了圆内接四边形的性质.
【考点】等边三角形的性质,特殊角的三角函数值
【分析】根据等边三角形的性质及特殊角的三角函数值即可解答.
解:∵∠α是等边三角形的一个内角,
∴
∴
故选:A.
【点睛】考查等边三角形的性质以及特殊角的锐角三角函数值,熟练掌握特殊角的三角形函数值是解题的关键.
【考点】 二次函数的性质.
【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标.
解:y=﹣(x+)2﹣3是抛物线的顶点式,
根据顶点式的坐标特点可知,顶点坐标为(﹣,﹣3).
故选B.
【点评】本题考查了二次函数的性质,熟练掌握利用顶点式解析式写出顶点坐标的方法是解题的关键.
【考点】相似三角形的判定与性质.
【分析】由DE∥BC,证出△ADE∽S△ABC,得出周长的比等于相似比,容易得出结果.
解:∵DE∥BC,
∴△ADE∽△ABC,
∴
∵AD+DE+AE=2,
∴AB+BC+AC=6.
故选:B
【点评】本题考查了相似三角形的判定与性质,根据相似三角形周长的比等于相似比解决问题.
【考点】切线的判定;坐标与图形变化﹣平移
【分析】分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.
解:当圆P在y轴的左侧与y轴相切时,平移的距离为3﹣2=1,
当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,
故选:D.
【点评】本题考查的是切线的判定、坐标与图形的变化﹣平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.
【考点】位似变换
【分析】E(﹣4,2)以O为位似中心,按相似比2∶1把△EFO放大,则点E的对应点E′坐标是E(﹣4,2)的坐标同时乘以2或-2,即可得到结论.
解:根据题意可知,点E的对应点E′的坐标是E(﹣4,2)的坐标同时乘以2或-2,
所以点E′的坐标为(8,-4)或(-8,4).
故选B.
【点睛】本题考查了位似变换及坐标与图形性质的知识,关于原点成位似的两个图形,若位似比是k,则原图形上的点(x,y),经过位似变化得到的对应点的坐标是(kx,ky)或(﹣kx,﹣ky).是需要记忆的内容.
【考点】一次函数的性质;反比例函数的性质;反比例函数图象上点的坐标特征;二次函数的性质.
【分析】A.由k=﹣3可得知y随x值的增大而减小;B、由k=2可得知y随x值的增大而增大;C、由a=2可得知:当x<0时,y随x值的增大而减小,当x>0时,y随x值的增大而增大;D、由k=﹣1可得知:当x<0时,y随x值的增大而增大,当x>0时,y随x值的增大而增大.此题得解.
解:A.y=﹣3x+2中k=﹣3,
∴y随x值的增大而减小,
∴A选项符合题意;
B、y=2x+1中k=2,
∴y随x值的增大而增大,
∴B选项不符合题意;
C、y=2x2+1中a=2,
∴当x<0时,y随x值的增大而减小,当x>0时,y随x值的增大而增大,
∴C选项不符合题意;
D、y=﹣中k=﹣1,
∴当x<0时,y随x值的增大而增大,当x>0时,y随x值的增大而增大,
∴D选项不符合题意.
故选A.
【点评】本题考查了一次函数的性质、二次函数的性质以及反比例函数的性质,根据一次(二次、反比例)函数的性质,逐一分析四个选项中y与x之间的增减性是解题的关键.
【考点】二次函数的性质.
【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.
解:A.∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;
B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;
C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;
D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;
故选D.
【点评】本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.
【考点】反比例函数与一次函数的交点问题;翻折变换(折叠问题).
【分析】根据矩形的性质得到,CB∥x轴,AB∥y轴,于是得到D(6,1),E(,4),根据勾股定理得到ED==,连接BB′,交ED于F,过B′作B′G⊥BC于G,根据轴对称的性质得到BF=B′F,BB′⊥ED求得BB′=,设EG=x,则BG=﹣x根据勾股定理即可得到结论.
解:∵矩形OABC,
∴CB∥x轴,AB∥y轴,
∵点B坐标为(6,4),
∴D的横坐标为6,E的纵坐标为4,
∵D,E在反比例函数y=的图象上,
∴D(6,1),E(,4),
∴BE=6﹣=,BD=4﹣1=3,
∴ED==,
连接BB′,交ED于F,过B′作B′G⊥BC于G,
∵B,B′关于ED对称,
∴BF=B′F,BB′⊥ED,
∴BF?ED=BE?BD,
即BF=3×,
∴BF=,
∴BB′=,
设EG=x,则BG=﹣x,
∵BB′2﹣BG2=B′G2=EB′2﹣GE2,
∴()2﹣(﹣x)2=()2﹣x2,
∴x=,
∴EG=,
∴CG=,
∴B′G=,
∴B′(,﹣),
∴k=﹣.
故选B.
【点评】本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.
【考点】翻折变换(折叠问题);等腰直角三角形;锐角三角函数的定义.
【分析】由题意得:△AEF≌△DEF,故∠EDF=∠A;由三角形的内角和定理及平角的知识问题即可解决.
解:∵在△ABC中,∠ACB=90°,AC=BC=4,
∴∠A=∠B,
由折叠的性质得到:△AEF≌△DEF,
∴∠EDF=∠A,
∴∠EDF=∠B,
∴∠CDE+∠BDF+∠EDF=∠BFD+∠BDF+∠B=180°,
∴∠CDE=∠BFD.
又∵AE=DE=3,
∴CE=4﹣3=1,
∴在直角△ECD中,sin∠CDE==.
故选:A.
【点评】主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用全等三角形的性质、三角形的内角和定理等知识来解决问题.
、填空题
【考点】相似图形
【分析】由题意一个三角形的各边长扩大为原来的5倍,根据相似三角形的性质及对应边长成比例来求解.
解:∵一个三角形的各边长扩大为原来的5倍,
∴扩大后的三角形与原三角形相似,
∵相似三角形的周长的比等于相似比,
∴这个三角形的周长扩大为原来的5倍,
故答案为:5.
【点评】本题考查了相似三角形的性质:相似三角形的周长的比等于相似比.
【考点】二次函数的性质.
【分析】根据二次函数的图象的顶点在y轴上,则b=0,进而得出答案.
解:由题意可得:y=x2(答案不唯一).
故答案为:y=x2(答案不唯一).
【点评】此题主要考查了二次函数的性质,正确得出b的值是解题关键.
【考点】圆锥的计算
【分析】首先求得高CD的长,然后根据圆锥的侧面积的计算方法,即可求解.
解:过点C作CD⊥AB于点D,Rt△ABC中,∠ACB=90°,AC=BC,∴AB=AC=4,∴CD=2,以CD为半径的圆的周长是:4π.
故直线旋转一周则所得的几何体得表面积是:2××4π×2=8π.
故答案为:8π.
【点睛】本题主要考查了圆锥的有关计算,正确确定旋转后的图形得出以CD为半径的圆的弧长是解题的关键.
【考点】二次函数图象上点的坐标特征,抛物线与x轴的交点
【分析】由于抛物线y=ax2+bx+c沿x轴向右平移1个单位得到y=a(x﹣1)2+b(x﹣1)+c,从而得到抛物线y=a(x﹣1)2+b(x﹣1)+c与x轴的两交点坐标为(﹣2,0),(5,0),然后根据抛物线与x轴的交点问题得到一元二方程a(x﹣1)2+b(x﹣1)+c=0的解.
解:关于x的一元二次方程a(x﹣1)2+c=b﹣bx变形为a(x﹣1)2+b(x﹣1)+c=0,
把抛物线y=ax2+bx+c沿x轴向右平移1个单位得到y=a(x﹣1)2+b(x﹣1)+c,
因为抛物线y=ax2+bx+c经过点A(﹣3,0)、B(4,0),
所以抛物线y=a(x﹣1)2+b(x﹣1)+c与x轴的两交点坐标为(﹣2,0),(5,0),
所以一元二方程a(x﹣1)2+b(x﹣1)+c=0的解为x1=﹣2,x2=5.
故答案为x1=﹣2,x2=5.
【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.
【考点】反比例函数与一次函数的交点问题
【分析】连接O,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG⊥AF,由AB经过原点,则A与B关于原点对称,再由BE⊥AE,AE为∠BAC的平分线,
可得AD∥OE,进而可得S△ACE=S△AOC,设点A(m,),由已知条件AC=3DC,DH∥AF,可得3DH=AF,则点D(3m,),证明△DHC∽△AGD,得到S△HDC=S△ADG,所以S△AOC=S△AOF+S梯形AFHD+S△HDC=k++=12,即可求解,
解:连接OE,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG⊥AF,
∵过原点的直线与反比例函数y=(k>0)的图象交于A,B两点,
∴A与B关于原点对称,
∴O是AB的中点,
∵BE⊥AE,
∴OE=OA,
∴∠OAE=∠AEO,
∵AE为∠BAC的平分线,
∴∠DAE=∠AEO,
∴AD∥OE,
∴S△ACE=S△AOC,
∵AC=3DC,△ADE的面积为8,
∴S△ACE=S△AOC=12,
设点A(m,),
∵AC=3DC,DH∥AF,
∴3DH=AF,
∴D(3m,),
∵CH∥GD,AG∥DH,
∴△DHC∽△AGD,
∴S△HDC=S△ADG,
∵S△AOC=S△AOF+S梯形AFHD+S△HDC=k+(DH+AF)×FH+S△HDC=k+×2m+=k++=12,
∴2k=12,
∴k=6,
故答案为6,
【点评】本题考查反比例函数k的意义,借助直角三角形和角平分线,将△ACE的面积转化为△AOC的面积是解题的关键.
【考点】正方形的性质;旋转的性质;解直角三角形.
【分析】连接CH,可知△CFH≌△CDH(HL),故可求∠DCH的度数;根据三角函数定义求解.
解:连接CH.
∵四边形ABCD,四边形EFCG都是正方形,且正方形ABCD绕点C旋转后得到正方形EFCG,
∴∠F=∠D=90°,
∴△CFH与△CDH都是直角三角形,
在Rt△CFH与Rt△CDH中,
∵,
∴△CFH≌△CDH(HL).
∴∠DCH=∠DCF=(90°﹣30°)=30°.
在Rt△CDH中,CD=3,
∴DH=tan∠DCH×CD=.
故答案为:.
【点评】此题主要考查旋转变换的性质及三角函数的定义,作出辅助线是关键.
、解答题
【考点】 作图—应用与设计作图; 勾股定理; 平行四边形的判定; 解直角三角形.
【分析】(1)因为AB为底、面积为12的等腰△ABC,所以高为4,点C在线段AB的垂直平分线上,由此即可画出图形;
(2)扇形根据tan∠EAB=的值确定点E的位置,由此即可解决问题,利用勾股定理计算CD的长;
解:(1)△ABC如图所示;
(2)平行四边形ABDE如图所示,CD==.
【点评】本题考查-应用与作图设计、勾股定理、等腰三角形的性质和判定、平行四边形的判定和性质,解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,利用数形结合的思想思考问题,属于中考常考题型.
【考点】相似三角形的判定与性质;垂径定理;切线的性质.
【分析】(1)由平行线的性质得出EF⊥AD,由线段垂直平分线的性质得出FA=FD,由等腰三角形的性质得出∠FAD=∠D,证出∠DCB=∠G,由对顶角相等得出∠GCF=∠G,即可得出结论;
(2)连接AC,由圆周角定理证出AC是⊙O的直径,由弦切角定理得出∠DCB=∠CAB,证出∠CAB=∠G,再由∠CBA=∠GBA=90°,证明△ABC∽△GBA,得出对应边成比例,即可得出结论.
证明:(1)∵EF∥BC,AB⊥BG,
∴EF⊥AD,
∵E是AD的中点,
∴FA=FD,
∴∠FAD=∠D,
∵GB⊥AB,
∴∠GAB+∠G=∠D+∠DCB=90°,
∴∠DCB=∠G,
∵∠DCB=∠GCF,
∴∠GCF=∠G
,∴FC=FG;
(2)连接AC,如图所示:
∵AB⊥BG,
∴AC是⊙O的直径,
∵FD是⊙O的切线,切点为C,
∴∠DCB=∠CAB,
∵∠DCB=∠G,
∴∠CAB=∠G,
∵∠CBA=∠GBA=90°,
∴△ABC∽△GBA,
∴=,
∴AB2=BC?BG.
【点评】本题考查了圆周角定理、相似三角形的判定与性质、等腰三角形的判定与性质、弦切角定理等知识;熟练掌握圆周角定理和弦切角定理,证明三角形相似是解决问题(2)的关键.
【考点】二次函数的应用
【分析】(1)根据表中数据可知应选择二次函数,再根据待定系数法求解即可;(2)先把(1)中求得的函数关系式化为顶点式,再根据二次函数的性质求解即可;(3)根据“实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm”可得“植物每天高度增长量超过25mm”,再根据表中数据的特征即可作出判断.
选择二次函数,设,得,
解得
∴关于的函数关系式是.
不选另外两个函数的理由:
注意到点(0,49)不可能在任何反比例函数图象上,所以不是的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,所以不是的一次函数.
(2)由(1),得,∴,
∵,∴当时,有最大值为50.
即当温度为-1℃时,这种植物每天高度增长量最大.
(3).
【点评】此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.
【考点】切线的性质,垂径定理,菱形的判定,等边三角形的判定和性质,等腰三角形的判定和性质
【分析】(1)首先证明∠DAE=2α,在Rt△ADE中,根据两锐角互余,可知2α+β=90°,(0°<α<45°);
(2)连接OF交AC于O′,连接CF.只要证明四边形AFCO是菱形,推出△AFO是等边三角形即可解决问题;
解:(1)连接OC.
∵DE是⊙O的切线,
∴OC⊥DE,
∵AD⊥DE,
∴AD∥OC,
∴∠DAC=∠ACO,
∵OA=OC,
∴∠OCA=∠OAC,
∴∠DAE=2α,
∵∠D=90°,
∴∠DAE+∠E=90°,
∴2α+β=90°(0°<α<45°).
(2)连接OF交AC于O′,连接CF.
∵AO′=CO′,
∴AC⊥OF,
∴FA=FC,
∴∠FAC=∠FCA=∠CAO,
∴CF∥OA,∵AF∥OC,
∴四边形AFCO是平行四边形,
∵OA=OC,
∴四边形AFCO是菱形,
∴AF=AO=OF,
∴△AOF是等边三角形,
∴∠FAO=2α=60°,
∴α=30°,
∵2α+β=90°,
∴β=30°,
∴α=β=30°.
【点评】本题考查切线的性质、垂径定理、菱形的判定.等边三角形的判定和性质等知识,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.
【考点】反比例函数与一次函数的交点问题.
【分析】(1)将点A坐标代入y=可得反比例函数解析式,据此求得点B坐标,根据A.B两点坐标可得直线解析式;
(2)根据点B坐标可得底边BC=2,由A.B两点的横坐标可得BC边上的高,据此可得.
解:(1)将点A(2,4)代入y=,得:m=8,
则反比例函数解析式为y=,
当x=﹣4时,y=﹣2,
则点B(﹣4,﹣2),
将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,
得:,
解得:,
则一次函数解析式为y=x+2;
(2)由题意知BC=2,
则△ACB的面积=×2×6=6.
【点评】本题考查一次函数与反比例函数的综合问题,解题的关键是根据待定系数求出反比例函数与一次函数的解析式,本题属于中等题型.
【考点】解直角三角形的应用﹣仰角俯角问题.
【分析】(1)过点C作CE与BD垂直,根据题意确定出所求角度数即可;
(2)在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高.
解:(1)过点C作CE⊥BD,则有∠DCE=18°,∠BCE=20°,
∴∠BCD=∠DCE+∠BCE=18°+20°=38°;
(2)由题意得:CE=AB=30m,
在Rt△CBE中,BE=CE?tan20°≈10.80m,
在Rt△CDE中,DE=CD?tan18°≈9.60m,
∴教学楼的高BD=BE+DE=10.80+9.60≈20.4m,
则教学楼的高约为20.4m.
【点评】此题考查了解直角三角形的应用-仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.
【考点】正方形的性质,待定系数法求二次函数的解析式,二次函数与几何变换
【分析】(1)根据正方形的性质得出点B、C的坐标,再利用待定系数法进行求解即可;
(2)根据点C坐标可得向下平行的单位长度,即可得平移后的抛物线解析式,令y=0,解方程求得x的值,继而可得答案.
(1)∵正方形的边长为2,
∴点B、C的坐标分别为(2,2),(0,2),
∴,
解得,
∴二次函数的解析式为;
(2)因为C(0,2),
所以将该二次函数图象向下平移2个单位,可使平移后所得图象经过坐标原点,
此时抛物线的解析式为:,
令y=0,则,
解得,
所以图象与x轴的另一个交点的坐标为(2,0).
【点睛】本题考查了正方形的性质,待定系数法求二次函数的解析式,抛物线的平移,解一元二次方程等,利用待定系数法求出二次函数的解析式是解本题的关键.
【考点】相似三角形的判定与性质;平行线的性质.
【分析】(1)当PQ∥BC时,根据平行线分线段成比例定理,可得出关于AP,PQ,AB,AC的比例关系式,我们可根据P,Q的速度,用时间x表示出AP,AQ,然后根据得出的关系式求出x的值.
(2)我们先看当时能得出什么条件,由于这两个三角形在AC边上的高相等,那么他们的底边的比就应该是面积比,由此可得出CQ:AC=1:3,那么CQ=10cm,此时时间x正好是(1)的结果,那么此时PQ∥BC,由此可根据平行这个特殊条件,得出三角形APQ和ABC的面积比,然后再根据三角形PBQ的面积=三角形ABC的面积﹣三角形APQ的面积﹣三角形BQC的面积来得出三角形BPQ和三角形ABC的面积比.
(3)本题要分两种情况进行讨论.已知了∠A和∠C对应相等,那么就要分成AP和CQ对应成比例以及AP和BC对应成比例两种情况来求x的值.
解:(1)由题意得,PQ平行于BC,则AP:AB=AQ:AC,AP=4x,AQ=30﹣3x
∴=
∴x=
(2)∵S△BCQ:S△ABC=1:3
∴CQ:AC=1:3,CQ=10cm
∴时间用了秒,AP=cm,
∵由(1)知,此时PQ平行于BC
∴△APQ∽△ABC,相似比为,
∴S△APQ:S△ABC=4:9
∴四边形PQCB与三角形ABC面积比为5:9,即S四边形PQCB=S△ABC,
又∵S△BCQ:S△ABC=1:3,即S△BCQ=S△ABC,
∴S△BPQ=S四边形PQCB﹣S△BCQ═S△ABC﹣S△ABC=S△ABC,
∴S△BPQ:S△ABC=2:9=
(3)假设两三角形可以相似
情况1:当△APQ∽△CQB时,CQ:AP=BC:AQ,即有=解得x=,
经检验,x=是原分式方程的解.
此时AP=cm,
情况2:当△APQ∽△CBQ时,CQ:AQ=BC:AP,即有=解得x=5,
经检验,x=5是原分式方程的解.
此时AP=20cm.
综上所述,AP=cm或AP=20cm.
【点评】本题主要考查了相似三角形的判定和性质,根据三角形相似得出线段比或面积比是解题的关键.