§2 角的概念的推广
教学目标
1.知识与技能
(1)通过实例,使学生理解角的概念的推广的必要性,理解任意角的概念,根据角的终边旋转方向,能判定正角、负角和零角;
(2)学会建立直角坐标系来讨论任意角,理解象限角的定义,掌握终边相同的角的表示方法。
2.过程与方法
通过学生观察、联想得出相应的数学规律的学习过程,体会有特殊到一般的数学思维方法。
3.情感态度与价值观
通过本节的学习,使同学们对角的概念有了一个新的认识;树立运动变化观点,学会运用运动变化的观点认识事物,激发学生学习的积极性和分析、探求问题的学习态度;让学生感受图形的对称美、运动美,培养学生对美的追求。
教材分析
初中学生学习的是角的静态定义,研究的范围有限。本节将在此基础上利用运动旋转来重新定义角,并把角的概念扩展到任意角,有正角、负角及零角之分,这在数学认识上是一个飞跃。为了突出本节的重点及突破本节的难点,主要从“形”到“数”或从“数”到“形”两个方面去研究。
本节的重要概念之一是象限角。研究角的方法是把角放在平面直角坐标系内,使角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合。象限角不包含终边在坐标轴上的角。
终边相同的角的集合表示法是本节的难点,也是学好本章的最主要的基本技能。终边相同的角的集合的表示方法,应当包含两种基本情况:(1)象限角;(2)终边落在x轴和y轴上的角。
教学重点
了解任意角的概念,初步理解正角、负角、零角、象限角和终边相同的角的概念,初步学会终边相同角的表示方法。
教学难点
终边相同的角的集合的表示方法。
教学方法与手段
在初中,我们知道最大的角是周角,最小的角是零角;通过回忆和类比初中所学角的概念, 启发探究,把角的概念进行了推广;角是一个平面图形,把角放入平面直角坐标系中以后,了解象限角的概念;通过角终边的旋转,讲练结合,掌握终边相同角的表示方法;我们在学习这部分内容时,首先要弄清楚角的表示符号,以及正负角的表示,另外还有相同终边角的集合的表示等。
教学过程
一、创设情境,揭示课题
同学们,我们在拧螺丝时,按逆时针方向旋转会越拧越松,按顺时针方向旋转会越拧越紧。但不知同学们有没有注意到,在这两个过程中,扳手分别所组成的两个角之间又有什么关系呢?请几个同学畅谈一下,教师控制好时间,2-3分钟为宜。
这里面到底是怎么回事?这就是我们这节课所要学习的内容。
初中我们已给角下了定义,先请一个同学回忆一下当时是怎么定义的?
我们把“有公共端点的两条射线组成的图形叫做角”,这是从静止的观点阐述的。
二、探究新知
如果我们从运动的观点来看,角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。(先后用教具圆规和多媒体给学生演示:逆时针转动形成角,顺时针转动而成角,转几圈也形成角,为推广角的概念做好准备)
正角、负角、零角的概念(打开课件第一版,演示正角、负角、零角的形成过程).
我们规定:(板书)按逆时针方向旋转形成的角叫做正角,如图(见课件)。一条射线由原来的位置,绕着它的端点按逆时针方向旋转到终止位置,就形成角.旋转开始时的射线叫做角的始边,叫终边,射线的端点叫做叫的顶点.按顺时针方向旋转形成的角叫做负角;如果一条射线没有作任何旋转,我们认为这时它也形成了一个角,并把这个角叫做零角,如果α是零角,那么α=0°。钟表的时针和分针在旋转时所形成的角总是负角.为了简便起见,在不引起混淆的前提下,“角α”或“∠α”可以记成“α”。
过去我们研究了0°~360°范围的角.如图(见课件)中的角α就是一个0°~360°范围内的角(α=30°).如果我们将角α的终边OB继续按逆时针方向旋转一周、两周……而形成的角是多少度?是不是仍为30°的角?(用多媒体演示这一旋转过程,让学生思考;为终边相同角概念做准备).将终边OB旋转一周、两周……,分别得到390°,750°……的角.如果将OB继续旋转下去,便可得到任意大小的正角。同样地,如果将OB按顺时针方向旋转,也可得到任意大小的负角(通过课件,动态演示这一无限旋转过程).这就是说,角度并不局限于0°~360°的范围,它可以为任意大小的角(与数轴进行比较).(打开课件第三版).如图(1)中的角为正角,它等于750°;(2)中,正角α=210°,负角β=—150°,γ=-660°.在生活中,我们也经常会遇到不在0°~360°范围的角,如在体操中,有“转体720°”(即“转体2周”),“转体1080°”(即“转体3周”)这样的动作名称;紧固螺丝时,扳手旋转而形成的角.
角的概念经过这样的推广以后,就包括正角、负角和零角.
2.象限角、坐标轴上的角的概念.
由于角是一个平面图形,所以今后我们常在直角坐标系内讨论角,(板书)我们使角的顶点与原点重合,角的始边与x轴的非负半轴(包括原点)重合,那么角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.(打开课件第四版)例如图(1)中的30°、390°、-330°角都是第一象限角,图(2)中的300°、-60°角都是第四象限角;585°角是第三象限角.
(板书)如果角的终边在坐标轴上,就认为这个角不属于任一象限.
3.终边相同的表示方法.
(返回课件第二版,在图(1)1(2)中分别以O为原点,直线0A为x轴建立直角坐标系,重新演示前面的旋转过程)在图(1)中,如果将终边OB按逆时针方向旋转一圈、两圈……,分别得到390°,750°……的角,这些角的终边与30°角的终边相同,只是转过的圈数不同,它们可以用30°角来表示,如390°=30°十360°,750°=30°十2×360°,……在图(2)中,如果将终边OB按顺时针方向旋转一圈、两圈……分别得到-330°,-690°……的角,这些角的终边与30°角终边也相同,也只是转过的圈数不同,它们也都可以用30°的角来表示,如-330°=30°-360°,-690°=30°—2×360°,……
由此可以发现,上面旋转所得到的所有的角(记为β),都可以表示成一个0°到360°的角与k(k∈Z)个周角的和,即:β=30°十k·360°(k∈Z).如果我们把β的集合记为S,那么S={β|β=30°十k·360°, k∈Z}.容易看出:所有与30°角终边相同的角,连同30°角(k=0)在内,都是集合S的元素;反过来,集合S的任一元素显然与30°角终边相同。
例1.判断下列各角是第几象限角.
(1)—60°; (2)585°; (3)—950°12’.
解:(1)∵—60°角终边在第四象限,∴它是第四象限角;(2)∵585°=360°十225°,∴585°与225°终边相同,又∵225°终边在第三象限,∴585°是第三象限角;(3)∵ —950°12’=-230°12’—2×360°,又∵-230°12’终边在第二象限,∴—950°12’是第二象限角.
例2.在直角坐标系中,写出终边在y轴上的角的集合(α用0°~360°的角表示).
解:在0°~360°范围内,终边在y轴上的角有两个,即90°与270°角,因此,所有与90°角终边相同的角构成集合S1={β|β=90°+k·360°,k∈Z};所有与270°角终边相同的角构成集合S2={β|β=270°+k·360°,k∈Z};所以,终边在y轴上的角的集合S=S1∪S2={β|β=90°+k·360°,k∈Z}∪{β|β=270°+k·360°,k∈Z}.
例3.写出与60°角终边相同的角的集合S,并把S中适合不等式-360°≤β<270°的元素β写出来.
解:S={β|β=60°+k·360°,k∈Z},S中适合-360°≤β<270°的元素是:
60°-1×360°=-300°,60°+0×360°=60°,60°+1×360°=420°.
课堂练习
(1) (口答)锐角是第几象限角?第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题.
(2)与—496°终边相同的角是 ,它是第 象限的角,它们中最小正角是 ,最大负角是 。
(3)时针经过3小时20分,则时针转过的角度为 ,分针转过的角度为 。
(4)若α、β的终边关于x轴对称,则α与β的关系是 ;若α与β的终边关于y轴对称,则α与β的关系是 ;若α、β的终边关于原点对称,则α与β的关系是 ;若角α是第二象限角,则180°—α是第 象限角。
[答案](1)是,不一定.
(2)—496°十k·360°(k∈Z),三,240°,—136°.
(3)—100°,—1200°.
(4)α十β=k·360°(k∈Z);α十β=180°十k·360。(k∈Z);
α一β=180°十k·360°(k∈Z);一.
三、归纳整理,整体认识
请学生回顾本节课所学过的知识内容有哪些?你知道角是如何推广的吗?
象限角是如何定义的呢? 你熟练掌握具有相同终边角的表示了吗?
(3)在本节课的学习过程中,还有哪些不太明白的地方?
(4)你在这节课中的表现怎样?你的体会是什么?
四、布置作业: 课本P8习题1-2 第2,3题.
五、教学反思
角的概念从静态到动态,范围从推广到任意大小,从过去的只有正角,到现在的还有零角、负角,以及研究角的背景是在坐标系中,等等这些变化对于学生来说是思维上的大挑战,因此教学中要尽量多的用实例来说明推广的意义。
在坐标系中动态的研究角,一下子增加了许多概念,正角、零角和负角,终边相同的角,象限角等等,而且周期性的提出给学生有点眼花缭乱的感觉,因此在讲概念及关系时,要准确到位。
总体上,本节教学内容难度不大,多练习,学生掌握的应该还可以。
(设计者:西安市第一中学 )