新教材高中数学人教A版必修第二册 10.1.3 古典概型(课件:46+21张PPT+学案)

文档属性

名称 新教材高中数学人教A版必修第二册 10.1.3 古典概型(课件:46+21张PPT+学案)
格式 zip
文件大小 15.0MB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2020-01-06 10:51:30

文档简介


A级:“四基”巩固训练
一、选择题
1.下列概率模型中,是古典概型的个数为(  )
①从区间[1,10]内任取一个数,求取到1的概率;
②从1~10中任意取一个整数,求取到1的概率;
③在一个正方形ABCD内画一点P,求点P刚好与点A重合的概率;
④向上抛掷一枚不均匀的硬币,求出现反面朝上的概率.
A.1 B.2
C.3 D.4
答案 A
解析 古典概型的特征是样本空间中样本点的个数是有限的,并且每个样本点发生的可能性相等,故②是古典概型;④由于硬币质地不均匀,样本点发生的可能性不一定相等,故不是古典概型;①和③中的样本空间中的样本点的个数不是有限的,故不是古典概型.故选A.
2.从集合{a,b,c,d,e}的所有子集中任取一个,则这个集合恰是集合{a,b,c}的子集的概率是(  )
A. B. C. D.
答案 C
解析 集合{a,b,c,d,e}共有25=32个子集,而集合{a,b,c}的子集有23=8个,所以所求概率为=.
3.某学校食堂推出两款优惠套餐,甲、乙、丙三位同学选择同一款套餐的概率为(  )
A. B. C. D.
答案 C
解析 设两款优惠套餐分别为A,B,列举样本点如图所示.
由图可知,共有8个样本点,这8个样本点发生的可能性是相等的.其中甲、乙、丙三位同学选择同一款套餐包括(A,A,A),(B,B,B),共2个样本点,故所求概率为P==.
4.甲、乙二人玩猜数字游戏,先由甲任想一数字,记为a,再由乙猜甲刚才想的数字,把乙猜出的数字记为b,且a,b∈{1,2,3,4},若|a-b|≤1,则称甲乙“心有灵犀”.现任意找两个人玩这个游戏,则他们“心有灵犀”的概率为(  )
A. B. C. D.
答案 B
解析 两人分别从1,2,3,4四个数中任取一个,共有16个样本点,这16个样本点发生的可能性是相等的.其中满足|a-b|≤1的样本点有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),共10个,故他们“心有灵犀”的概率为=.
5.某大学餐饮中心为了解新生的饮食习惯,在全校大一学生中进行了抽样调查.已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,则至多有1人喜欢甜品的概率为(  )
A.0.3 B.0.4
C.0.6 D.0.7
答案 D
解析 记2名喜欢甜品的学生分别为a1,a2,3名不喜欢甜品的学生分别为b1,b2,b3.
从这5名数学系学生中任取3人的所有可能结果共10个,分别为(a1,a2,b1),(a1,a2,b2),(a1,a2,b3),(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3),这10种结果发生的可能性是相等的.
记事件A表示“至多有1人喜欢甜品”,则事件A所包含的样本点有(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3),共7个.根据古典概型的概率计算公式,得至多有1人喜欢甜品的概率P(A)==0.7,故选D.
二、填空题
6.同时掷两枚相同的骰子,则两枚骰子向上的点数之积等于12的概率为________.
答案 
解析 同时掷两枚相同的骰子的样本点总数为36,这36个样本点发生的可能性是相等的,满足两枚骰子向上的点数之积为12的样本点有(2,6),(3,4),(4,3),(6,2),共4个,故所求概率为=.
7.从{1,2,3,4,5}中随机选取一个数为a,从{1,2,3}中随机选取一个数为b,则b>a的概率是________.
答案 
解析 抽取的a,b组合有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),共15种情况,这15种情况发生的可能性是相等的.其中(1,2),(1,3),(2,3)满足b>a,故所求概率为=.
8.一个三位自然数百位、十位、个位上的数字依次为a,b,c,当且仅当有两个数字的和等于第三个数字时称为“有缘数”(如213,134等),若a,b,c∈{1,2,3,4},且a,b,c互不相同,则这个三位数为“有缘数”的概率是________.
答案 
解析 由1,2,3组成的三位自然数为123,132,213,231,312,321,共6个;同理,由1,2,4组成的三位自然数为6个,由1,3,4组成的三位自然数为6个,由2,3,4组成的三位自然数为6个,共有24个,这24个数出现的可能性是相等的.由1,2,3或1,3,4组成的三位自然数为“有缘数”,共12个,所以三位数为“有缘数”的概率为=.
三、解答题
9.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖.
(1)用球的标号列出所有可能的摸出结果;
(2)有人认为:两个箱子中的红球总数比白球总数多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.
解 (1)所有可能的摸出结果是(A1,a1),(A1,a2),(A1,b1),(A1,b2),(A2,a1),(A2,a2),(A2,b1),(A2,b2),(B,a1),(B,a2),(B,b1),(B,b2).
(2)不正确,理由如下:
由(1),知所有可能的摸出结果共12种,且这12种结果发生的可能性是相等的.其中摸出的2个球都是红球的结果有{A1,a1},{A1,a2},{A2,a1},{A2,a2},共4种,所以中奖的概率为=,不中奖的概率为1-=,故不中奖的概率比较大.
B级:“四能”提升训练
小李在做一份调查问卷,共有5道题,其中有两种题型,一种是选择题,共3道,另一种是填空题,共2道.
(1)小李从中任选2道题解答,每一次选1题(不放回),求所选的题不是同一种题型的概率;
(2)小李从中任选2道题解答,每一次选1题(有放回),求所选的题不是同一种题型的概率.
解 (1)将3道选择题依次编号为1,2,3;2道填空题依次编号为4,5.
从5道题中任选2道题解答,每一次选1题(不放回),样本空间Ω={(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4)},共20个样本点,这20个样本点发生的可能性是相等的.
设事件A为“所选的题不是同一种题型”,则事件A包含的样本点有(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),共12个,所以P(A)==0.6.
(2)从5道题中任选2道题解答,每一次选1题(有放回),样本空间Ω={(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5)},共25个样本点,这25个样本点发生的可能性是相等的.
设事件B为“所选的题不是同一种题型”,则事件B包含的样本点有(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),共12个,所以P(B)==0.48.
课件21张PPT。课后课时精练 10.1.3 古典概型
(教师独具内容)
课程标准:1.了解概率的含义.2.结合具体实例,理解古典概型.3.能计算古典概型中随机事件的概率.
教学重点:古典概型的定义及其概率公式.
教学难点:会用列举法计算随机事件所包含的样本点数及其发生的概率.
知识点一   概率
对随机事件发生可能性大小的度量(数值)称为事件的概率,事件A的概率用P(A)表示.
知识点二   古典概型的概念
如果试验具有以下两个特征:
(1)有限性:样本空间的样本点只有有限个;
(2)等可能性:每个样本点发生的可能性相等.
我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型,简称古典概型.
知识点三   古典概型的概率公式
一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)==.
其中,n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.
1.从集合的角度理解古典概型的概率公式
用集合的观点来考察事件A的概率,有利于帮助我们生动、形象地理解事件A与基本事件的关系,有利于理解公式P(A)=.如图所示.
把一次试验中等可能出现的n个结果组成一个集合I,其中每一个结果就是I中的一个元素,把含m个结果的事件A看作含有m个元素的集合,则集合A是集合I的一个子集,故有P(A)=.
2.求解古典概型问题的一般思路
(1)明确试验的条件及要观察的结果,用适当的符号(字母、数字、数组等)表示试验的可能结果(借助图表可以帮助我们不重不漏地列出所有的可能结果).
(2)根据实际问题情境判断样本点的等可能性.
(3)计算样本点总个数n及事件A包含的样本点个数k,求出事件A的概率.
P(A)==.
1.判一判(正确的打“√”,错误的打“×”)
(1)若一次试验的结果所包含的样本点的个数为有限个,则该试验符合古典概型.(  )
(2)从装有三个大球、一个小球的袋中,取出一球的试验是古典概型.(  )
(3)若一个古典概型的样本点总数为n,则每一个样本点出现的可能性均为.(  )
答案 (1)× (2)× (3)√
2.做一做
(1)下列关于古典概型的说法中正确的是(  )
①试验样本空间的样本点只有有限个;②每个事件出现的可能性相等;③每个样本点出现的可能性相等;④样本点的总数为n,随机事件A若包含k个样本点,则P(A)=.
A.②④ B.①③④
C.①④ D.③④
(2)掷一枚骰子,观察掷出的点数,则掷得奇数点的概率是(  )
A. B.
C. D.
(3)从甲、乙、丙三人中任选两人担任课代表,甲被选中的概率为(  )
A. B.
C. D.1
答案 (1)B (2)A (3)C
题型一 样本点的计数方法
例1 (1)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的所有样本点数为(  )
A.2 B.3
C.4 D.6
(2)连续掷3枚硬币,观察这3枚硬币落在地面上时是正面朝上还是反面朝上.
①写出这个试验的所有样本点;
②求这个试验的样本点的总数;
③“恰有两枚硬币正面朝上”这一事件包含哪些样本点?
[解析] (1)用列举法列举出“数字之和为奇数”的可能结果为(1,2),(1,4),(2,3),(3,4),共4种可能.
(2)①这个试验包含的样本点有:(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反).
②这个试验包含的样本点的总数是8.
③“恰有两枚硬币正面朝上”这一事件包含以下3个样本点:(正,正,反),(正,反,正),(反,正,正).
[答案] (1)C (2)见解析
 样本点的两个探求方法
(1)列举法:把试验的全部结果一一列举出来.此方法适合于较为简单的试验问题.
(2)树状图法:树状图法是使用树状的图形把样本点列举出来的一种方法,树状图法便于分析样本点间的结构关系,对于较复杂的问题,可以作为一种分析问题的主要手段,树状图法适用于较复杂的试验的题目.
口袋中有2个白球和2个黑球,这4个球除颜色外完全相同,4个人按顺序依次从中摸出一球,求样本点的总数.
解 把2个白球和2个黑球分别编号为1,2,3,4,所有可能结果如树状图所示,共24个样本点.
题型二 古典概型的判定
例2 袋中有大小相同的3个白球,2个红球,2个黄球,每个球有一个区别于其他球的编号,从中随机摸出一个球.
(1)把每个球的编号看作一个样本点建立的概率模型是不是古典概型?
(2)把球的颜色作为划分样本点的依据,有多少个样本点?以这些样本点建立的概率模型是不是古典概型?
[解] (1)因为样本点个数有限,而且每个样本点发生的可能性相同,所以是古典概型.
(2)把球的颜色作为划分样本点的依据,可得到“取得一个白色球”“取得一个红色球”“取得一个黄色球”,共3个样本点.这些样本点个数有限,但“取得一个白色球”的概率与“取得一个红色球”或“取得一个黄色球”的概率不相等,即不满足等可能性,故不是古典概型.
 判断一个试验是古典概型的依据
一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——样本点的有限性和等可能性.
下列概率模型:
①在平面直角坐标系内,从横坐标和纵坐标都是整数的所有点中任取一点;
②某射手射击一次,可能命中0环,1环,2环,…,10环;
③某小组有男生5人,女生3人,从中任选1人做演讲;
④一只使用中的灯泡的寿命长短;
⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”.
其中属于古典概型的是________.
答案 ③
解析 ①不属于.原因是所有横坐标和纵坐标都是整数的点有无限多个,不满足有限性;②不属于.原因是命中0环,1环,…,10环的概率不一定相同,不满足等可能性;③属于.原因是显然满足有限性,且任选1人与学生的性别无关,是等可能的;④不属于.原因是灯泡的寿命是任何一个非负实数,有无限多种可能,不满足有限性;⑤不属于.原因是该品牌月饼被评为“优”或“差”的概率不一定相同,不满足等可能性.
题型三 古典概型的求法
例3 从1,2,3,4,5这5个数字中任取三个不同的数字,求下列事件的概率:
(1)事件A={三个数字中不含1或5};
(2)事件B={三个数字中含1或5}.
[解] 这个试验的样本空间Ω={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)},样本点总数n=10,这10个样本点发生的可能性是相等的.
(1)因为事件A={(2,3,4)},
所以事件A包含的样本点数m=1.
所以P(A)==.
(2)因为事件B={(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,5),(2,4,5),(3,4,5)},
所以事件B包含的样本点数m=9.
所以P(B)==.
 1.古典概型概率的求法步骤
(1)确定等可能样本点总数n;
(2)确定所求事件包含的样本点数m;
(3)P(A)=.
2.使用古典概型概率公式的注意点
(1)首先确定是否为古典概型;
(2)A事件是什么,包含的样本点有哪些.
甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数则甲赢,否则乙赢.
(1)若以A表示事件“和为6”,求P(A);
(2)若以B表示事件“和大于4且小于9”,求P(B);
(3)这个游戏公平吗?请说明理由.
解 将所有的样本点列表如下:
甲乙
1
2
3
4
5
1
(1,1)
(1,2)
(1,3)
(1,4)
(1,5)
2
(2,1)
(2,2)
(2,3)
(2,4)
(2,5)
3
(3,1)
(3,2)
(3,3)
(3,4)
(3,5)
4
(4,1)
(4,2)
(4,3)
(4,4)
(4,5)
5
(5,1)
(5,2)
(5,3)
(5,4)
(5,5)
由上表可知,该试验共有25个等可能发生的样本点,属于古典概型.
(1)事件A包含了(1,5),(2,4),(3,3),(4,2),(5,1),共5个样本点,故P(A)==.
(2)事件B包含了(1,4),(1,5),(2,3),(2,4),(2,5),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),共16个样本点,
所以P(B)=.
(3)这个游戏不公平.因为“和为偶数”的概率为,“和为奇数”的概率是,二者不相等,所以游戏不公平.
题型四 较复杂的古典概型的概率计算
例4 有A,B,C,D四位贵宾,应分别坐在a,b,c,d四个席位上,现在这四人均未留意,在四个席位上随便就坐时.
(1)求这四人恰好都坐在自己席位上的概率;
(2)求这四人恰好都没坐在自己席位上的概率;
(3)求这四人恰好有1位坐在自己席位上的概率.
[解] 将A,B,C,D四位贵宾就座情况用下面图形表示出来:
如上图所示,共24个等可能发生的样本点,属于古典概型.
(1)设事件A为“这四人恰好都坐在自己席位上”,则事件A只包含1个样本点,所以P(A)=.
(2)设事件B为“这四人恰好都没坐在自己席位上”,则事件B包含9个样本点,所以P(B)==.
(3)设事件C为“这四人恰好有1位坐在自己席位上”,则事件C包含8个样本点,所以P(C)==.
(1)当样本点个数没有很明显的规律,并且涉及的样本点又不是太多时,我们可借助树状图法直观地将其表示出来,这是进行列举的常用方法.树状图可以清晰准确地列出所有的样本点,并且画出一个树枝之后可猜想其余的情况.
(2)在求概率时,若样本点可以表示成有序数对的形式,则可以把全部样本点用平面直角坐标系中的点表示,即采用图表的形式可以准确地找出样本点的个数.故采用数形结合法求概率可以使解决问题的过程变得形象、直观,给问题的解决带来方便.
现有8名奥运会志愿者,其中志愿者A1,A2,A3通晓日语,B1,B2,B3通晓俄语,C1,C2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(1)求A1被选中的概率;
(2)求B1和C1不全被选中的概率.
解 (1)从8人中选出日语、俄语和韩语志愿者各1名,这个试验的样本空间Ω={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2,C2),(A3,B3,C1),(A3,B3,C2)},共18个样本点.由于每一个样本点被抽取的机会均等,因此这些样本点的发生是等可能的.
用M表示“A1被选中”这一事件,则M={(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2)},共6个样本点,因此P(M)==.
(2)用N表示“B1和C1不全被选中”这一事件,则其对立事件表示“B1,C1全被选中”这一事件,由于={(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)},共有3个样本点,而N∪=Ω,且N∩=?,
故事件N包含的样本点个数为18-3=15,
所以P(N)==.
1.若书架上放有中文书5本,英文书3本,日文书2本,由书架上抽出一本外文书的概率为(  )
A. B.
C. D.
答案 D
解析 由题意知书架上共有10本书,其中外文书为英文书和日文书的和,即3+2=5(本).所以由书架上抽出一本外文书的概率P==,故选D.
2.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为(  )
A. B. C. D.
答案 C
解析 从5支彩笔中任取2支不同颜色的彩笔,这个试验的样本空间Ω={(红,黄),(红,蓝),(红,绿),(红,紫),(黄,蓝),(黄,绿),(黄,紫),(蓝,绿),(蓝,紫),(绿,紫)},共10个样本点,这10个样本点发生的可能性是相等的.而取出的2支彩笔中含有红色彩笔包含的样本点有(红,黄),(红,蓝),(红,绿),(红,紫),共4个,故所求概率P==.
3.甲、乙、丙三人在3天节日中值班,每人值班1天,则甲紧接着排在乙的前面值班的概率是(  )
A. B. C. D.
答案 C
解析 因为甲、乙、丙三人在3天节日中,每人值班1天,所以样本空间Ω={甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲},共6个样本点,而甲紧接着排在乙的前面值班的情况为{甲乙丙,丙甲乙},共2个样本点.所以甲紧接着排在乙的前面值班的概率是.选C.
4.三张卡片上分别写上字母E,E,B,将三张卡片随机地排成一行,恰好排成英文单词BEE的概率为________.
答案 
解析 三张卡片的排列方法有BE1E2,BE2E1,E1BE2,E1E2B,E2E1B,E2BE1,共6种,这6种情况发生的可能性是相等的.其中恰好排成英文单词BEE的有2种,故恰好排成英文单词BEE的概率为.
5.一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球.
(1)共有多少个样本点?
(2)摸出的2只球都是白球的概率是多少?
解 (1)分别记白球为1,2,3号,黑球为4,5号,从中摸出2只球,有如下样本点(摸到1,2号球用(1,2)表示):(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).因此,共有10个样本点.
(2)上述10个样本点发生的可能性相同,且只有3个样本点是摸到两只白球(记为事件A),即(1,2),(1,3),(2,3),故 P(A)=.
故摸出2只球都是白球的概率为.
课件46张PPT。10.1.3 古典概型