2020年华师大版九年级上册数学《第24章 解直角三角形》单元测试卷
一.选择题(共10小题)
1.如图,Rt△ACB中,∠ACB=90°,∠ABC的平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是( )
A.①②③ B.①②④ C.②③④ D.①②③④
2.下列说法正确的有( )
①如果∠A+∠B=∠C,那么△ABC是直角三角形;②如果∠A:∠B:∠C=1:2:3,则三角形是直角三角形;③如果三角形的三边长分别为4、4、6,那么这个三角形不是直角三角形;④有一个角是直角的三角形是直角三角形.
A.1个 B.2个 C.3个 D.4个
3.下列说法中,正确的是( )
A.直角三角形中,已知两边长为3和4,则第三边长为5
B.三角形是直角三角形,三角形的三边为a,b,c则满足a2﹣b2=c2
C.以三个连续自然数为三边长不可能构成直角三角形
D.△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形
4.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是( )
A.35° B.55° C.60° D.70°
5.若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形一定是( )
A.等腰三角形 B.等边三角形
C.等腰直角三角形 D.直角三角形
6.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD的值为( )
A. B. C. D.3
7.如图,△ABC中,点D在线段BC上,且∠BAD=∠C,则下列结论一定正确的是( )
A.AB2=AC?BD B.AB?AD=BD?BC
C.AB2=BC?BD D.AB?AD=BD?CD
8.Rt△ABC中,∠C=90°,cosA=,AC=6cm,那么BC等于( )
A.8cm B. cm C. cm D. cm
9.如果∠A为锐角,sinA=,那么( )
A.0°<∠A<30° B.30°<∠A<45° C.45°<∠A<60° D.60°<∠A<90°
10.Rt△ABC中,∠C=90°,已知cosA=,那么tanA等于( )
A. B. C. D.
二.填空题(共8小题)
11.在Rt△ABC中,锐角∠A=35°,则另一个锐角∠B= .
12.直角三角形中两锐角平分线相交所成的角的度数是 .
13.如图△ABC中,∠A:∠B=1:2,DE⊥AB于E,且∠FCD=75°,则∠D= .
14.Rt△ABC中,∠C=90°,∠B=2∠A,BC=3cm,AB= cm.
15.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为 .
16.如图,若CD是Rt△ABC斜边上的高,AD=3,CD=4,则BC= .
17.如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为 .
18.已知∠A为锐角,且,那么∠A的范围是 .
三.解答题(共8小题)
19.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
20.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.
21.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.
(1)求证:∠ACD=∠B;
(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.
22.如图所示,在△ABC中,已知AD⊥BC,∠B=64°,∠C=56°,
(1)求∠BAD和∠DAC的度数;
(2)若DE平分∠ADB,求∠AED的度数.
23.如图,定义:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα==,根据上述角的余切定义,解下列问题:
(1)ctan30°= ;
(2)如图,已知tanA=,其中∠A为锐角,试求ctanA的值.
24.下列关系式是否成立(0<α<90°),请说明理由.
(1)sinα+cosα≤1;
(2)sin2α=2sinα.
25.小明在某次作业中得到如下结果:
sin27°+sin283°≈0.122+0.992=0.9945,
sin222°+sin268°≈0.372+0.932=1.0018,
sin229°+sin261°≈0.482+0.872=0.9873,
sin237°+sin253°≈0.602+0.802=1.0000,
sin245°+sin245°=()2+()2=1.
据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.
(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;
(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.
26.计算:4sin260°+tan45°﹣8cos230°.
2020年华师大版九年级上册数学《第24章 解直角三角形》单元测试卷
参考答案与试题解析
一.选择题(共10小题)
1.如图,Rt△ACB中,∠ACB=90°,∠ABC的平分线BE和∠BAC的外角平分线AD相交于点P,分别交AC和BC的延长线于E,D.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF交DH于点G.则下列结论:①∠APB=45°;②PF=PA;③BD﹣AH=AB;④DG=AP+GH.其中正确的是( )
A.①②③ B.①②④ C.②③④ D.①②③④
【分析】①根据三角形的一个外角等于与它不相邻的两个内角的和与角平分线的定义表示出∠CAP,再根据角平分线的定义∠ABP=∠ABC,然后利用三角形的内角和定理整理即可得解;
②先求出∠APB=∠FPB,再利用“角边角”证明△ABP和△FBP全等,根据全等三角形对应边相等得到AB=BF,AP=PF;
③根据直角的关系求出∠AHP=∠FDP,然后利用“角角边”证明△AHP与△FDP全等,根据全等三角形对应边相等可得DF=AH;
④求出∠ADG=∠DAG=45°,再根据等角对等边可得DG=AG,再根据等腰直角三角形两腰相等可得GH=GF,然后求出DG=GH+AF,有直角三角形斜边大于直角边,AF>AP,从而得出本小题错误.
【解答】解:①∵∠ABC的角平分线BE和∠BAC的外角平分线,
∴∠ABP=∠ABC,
∠CAP=(90°+∠ABC)=45°+∠ABC,
在△ABP中,∠APB=180°﹣∠BAP﹣∠ABP,
=180°﹣(45°+∠ABC+90°﹣∠ABC)﹣∠ABC,
=180°﹣45°﹣∠ABC﹣90°+∠ABC﹣∠ABC,
=45°,故本小题正确;
②∵PF⊥AD,∠APB=45°(已证),
∴∠APB=∠FPB=45°,
∵∵PB为∠ABC的角平分线,
∴∠ABP=∠FBP,
在△ABP和△FBP中,
,
∴△ABP≌△FBP(ASA),
∴AB=BF,AP=PF;故②正确;
③∵∠ACB=90°,PF⊥AD,
∴∠FDP+∠HAP=90°,∠AHP+∠HAP=90°,
∴∠AHP=∠FDP,
∵PF⊥AD,
∴∠APH=∠FPD=90°,
在△AHP与△FDP中,
,
∴△AHP≌△FDP(AAS),
∴DF=AH,
∵BD=DF+BF,
∴BD=AH+AB,
∴BD﹣AH=AB,故③小题正确;
④∵AP=PF,PF⊥AD,
∴∠PAF=45°,
∴∠ADG=∠DAG=45°,
∴DG=AG,
∵∠PAF=45°,AG⊥DH,
∴△ADG与△FGH都是等腰直角三角形,
∴DG=AG,GH=GF,
∴DG=GH+AF,
∵AF>AP,
∴DG=AP+GH不成立,故本小题错误,
综上所述①②③正确.
故选:A.
【点评】本题考查了直角三角形的性质,全等三角形的判定,以及等腰直角三角形的判定与性质,等角对等边,等边对等角的性质,综合性较强,难度较大,做题时要分清角的关系与边的关系.
2.下列说法正确的有( )
①如果∠A+∠B=∠C,那么△ABC是直角三角形;②如果∠A:∠B:∠C=1:2:3,则三角形是直角三角形;③如果三角形的三边长分别为4、4、6,那么这个三角形不是直角三角形;④有一个角是直角的三角形是直角三角形.
A.1个 B.2个 C.3个 D.4个
【分析】根据题意,一一查看选项,根据勾股定理的逆定理或有一个角为直角的三角形为直角三角形判断选项是否正确.
【解答】解:①∵∠A+∠B=∠C,且∠A+∠B+∠C=180°,得∠C=90°,
∴△ABC是直角三角形,故①正确;
②设∠A=x,∠B=2x,∠C=3x,则∠A+∠B=∠C,由①知,该三角形是直角三角形,故②正确;
③42=16,62=36,显然42+42≠62,不符合勾股定理的逆定理,该三角形不是直角三角形,故③正确;
④符合直角三角形的判定方法,故④正确;
所以4个结论都正确,故选D.
【点评】本题考查直角三角形的判定方法,此题中涉及到直角三角形的三种判定方法:
①有一个角是直角的三角形是直角三角形;
②有两个锐角互余的三角形是直角三角形;
③勾股定理的逆定理;
属基础题.
3.下列说法中,正确的是( )
A.直角三角形中,已知两边长为3和4,则第三边长为5
B.三角形是直角三角形,三角形的三边为a,b,c则满足a2﹣b2=c2
C.以三个连续自然数为三边长不可能构成直角三角形
D.△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形
【分析】根据直角三角形的判定进行分析,从而得到答案.
【解答】解:A、应为“直角三角形中,已知两直角边的边长为3和4,则斜边的边长为5”,故错误;
B、应为“三角形是直角三角形,三角形的直角边分别为a,b,斜边为c则满足a2+b2=c2”,故错误;
C、比如:边长分别为3,4,5,有32+42=25=52,能构成直角三角形,故错误;
D、根据三角形内角和定理可求出三个角分别为15°,75°,90°,因而是直角三角形,故正确.
故选:D.
【点评】本题考查了直角三角形的性质和判定,注意在叙述命题时要叙述准确.
4.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是( )
A.35° B.55° C.60° D.70°
【分析】根据直角三角形两锐角互余求出∠CBD,再根据角平分线的定义解答.
【解答】解:∵CD⊥BD,∠C=55°,
∴∠CBD=90°﹣55°=35°,
∵BD平分∠ABC,
∴∠ABC=2∠CBD=2×35°=70°.
故选:D.
【点评】本题考查了直角三角形两锐角互余的性质,角平分线的定义,熟记性质是解题的关键.
5.若一个三角形的三条高线交点恰好是此三角形的一个顶点,则此三角形一定是( )
A.等腰三角形 B.等边三角形
C.等腰直角三角形 D.直角三角形
【分析】根据直角三角形的判定方法,对选项进行一一分析,排除错误答案.
【解答】解:A、等腰三角形,三条高线交点在三角形内或外或某一顶点处,故A错误;
B、等边三角形,三条高线交点在三角形内,故B错误;
C、因为已知无法确定其两腰相等,而只要是直角三角形就行了,不一定非得是等腰直角三角形,故C错误;
D、因为直角三角形的直角所在的顶点正好是三条高线的交点,所以可以得出这个三角形是直角三角形,故D正确.
故选:D.
【点评】此题考查直角三角形的性质,是基础知识要熟练掌握.
6.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,如果AC=3,AB=6,那么AD的值为( )
A. B. C. D.3
【分析】根据射影定理得到:AC2=AD?AB,把相关线段的长度代入即可求得线段AD的长度.
【解答】解:如图,∵在Rt△ABC中,∠ACB=90°,CD⊥AB,
∴AC2=AD?AB,
又∵AC=3,AB=6,
∴32=6AD,则AD=.
故选:A.
【点评】本题考查了射影定理.每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.
7.如图,△ABC中,点D在线段BC上,且∠BAD=∠C,则下列结论一定正确的是( )
A.AB2=AC?BD B.AB?AD=BD?BC
C.AB2=BC?BD D.AB?AD=BD?CD
【分析】先证明△BAD∽△BCA,则利用相似的性质得AB:BC=BD:AB,然后根据比例性质得到AB2=BC?BD.
【解答】解:∵∠BAD=∠C,
而∠ABD=∠CBA,
∴△BAD∽△BCA,
∴AB:BC=BD:AB,
∴AB2=BC?BD.
故选:C.
【点评】本题考查了射影定理:直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项;每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.也考查了相似三角形的判定与性质.
8.Rt△ABC中,∠C=90°,cosA=,AC=6cm,那么BC等于( )
A.8cm B. cm C. cm D. cm
【分析】首先利用锐角三角函数的定义求出斜边的长度,再运用勾股定理即可求解.
【解答】解:∵在Rt△ABC中,∠C=90°,cosA==,AC=6cm,
∴AB=10cm,
∴BC==8cm.
故选:A.
【点评】本题主要考查了锐角三角函数的定义:在直角三角形中,锐角的余弦为邻边比斜边,同时考查了勾股定理.
9.如果∠A为锐角,sinA=,那么( )
A.0°<∠A<30° B.30°<∠A<45° C.45°<∠A<60° D.60°<∠A<90°
【分析】首先明确sin30°=,再根据一个锐角的正弦值随着角的增大而增大,进行分析.
【解答】解:∵sin30°=,0<<,
∴0°<∠A<30°.
故选:A.
【点评】熟记特殊角的三角函数值,了解锐角三角函数的增减性是解题的关键.
10.Rt△ABC中,∠C=90°,已知cosA=,那么tanA等于( )
A. B. C. D.
【分析】根据cosA=设出关于两边的代数表达式,再根据勾股定理求出第三边长的表达式即可推出tanA的值.
【解答】解:∵cosA=知,设b=3x,则c=5x,根据a2+b2=c2得a=4x.
∴tanA===.
故选:A.
【点评】求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.
二.填空题(共8小题)
11.在Rt△ABC中,锐角∠A=35°,则另一个锐角∠B= 55° .
【分析】根据在直角三角形中两个锐角互余即可得出答案.
【解答】解:∵在Rt△ABC中,锐角∠A=35°,
∴另一个锐角∠B=90°﹣35°=55°,
故答案为:55°.
【点评】本题考查了直角三角形的性质,属于基础题,主要掌握直角三角形中两个锐角互余.
12.直角三角形中两锐角平分线相交所成的角的度数是 45°或135° .
【分析】作出图形,根据直角三角形两锐角互余求出∠ABC+∠BAC=90°,再根据角平分线的定义可得∠OAB+∠OBA=(∠ABC+∠BAC),然后利用三角形的一个外角等于与它不相邻的两个内角的和求出∠AOE,即为两角平分线的夹角.
【解答】解:如图,∠ABC+∠BAC=90°,
∵AD、BE分别是∠BAC和∠ABC的角平分线,
∴∠OAB+∠OBA=(∠ABC+∠BAC)=45°,
∴∠AOE=∠OAB+∠OBA=45°,
∴∠AOB=135°
∴两锐角的平分线的夹角是45°或135°,
故答案为:45°或135°
【点评】本题考查了直角三角形两锐角互余的性质,角平分线的定义,整体思想的利用是解题的关键.
13.如图△ABC中,∠A:∠B=1:2,DE⊥AB于E,且∠FCD=75°,则∠D= 40° .
【分析】先根据∠FCD=60°及三角形内角与外角的性质及∠A:∠B=1:2可求出∠A的度数,再由DE⊥AB及三角形内角和定理解答可求出∠AFE的度数,再根据三角形内角和定理即可求出答案.
【解答】解:∵∠FCD=75°,
∴∠A+∠B=75°,
∵∠A:∠B=1:2,
∴∠A=×75°=25°,
∵DE⊥AB于E,
∴∠AFE=90°﹣∠A=90°﹣25°=65°,
∴∠CFD=∠AFE=65°,
∵∠FCD=75°,
∴∠D=180°﹣∠CFD﹣∠FCD=180°﹣65°﹣75°=40°.
故答案为:40°
【点评】本题考查了直角三角形的性质,垂直定义,三角形内角和定理,三角形外角性质的应用,关键是求出∠DFC的度数.
14.Rt△ABC中,∠C=90°,∠B=2∠A,BC=3cm,AB= 6 cm.
【分析】根据直角三角形的性质即可解答.
【解答】解:如图:∵Rt△ABC中,∠C=90°,∠B=2∠A
∴∠A+∠B=90°
∴∠A=30°,∠B=60°
∴=,
∵BC=3cm,
∴AB=2×3=6cm.
故答案为:6.
【点评】此题较简单,只要熟记30°角所对的直角边等于斜边的一半即可解答.
15.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为 4 .
【分析】根据射影定理得到:CD2=AD?BD,把相关线段的长度代入计算即可.
【解答】解:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,
∴CD2=AD?BD=8×2,
则CD=4.
故答案是:4.
【点评】本题考查了射影定理.Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:①AD2=BD?DC;②AB2=BD?BC;AC2=CD?BC.
16.如图,若CD是Rt△ABC斜边上的高,AD=3,CD=4,则BC= .
【分析】由三角形的性质:直角三角形中,斜边上的高是两条直角边在斜边上的射影比例中项,即CD2=AD×BD,可将BD的长求出,然后在Rt△BCD中,根据勾股定理可将BC的边求出.
【解答】解:∵若CD是Rt△ABC斜边上的高,AD=3,CD=4
∴CD2=AD×BD,即42=3×BD解得:BD=
在Rt△BCD中,∵BC2=CD2+BD2,
∴BC===.
故答案为:.
【点评】本题主要考查三角形的性质及对勾股定理的应用.
17.如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为 .
【分析】结合图形,根据锐角三角函数的定义即可求解.
【解答】解:由图形知:tan∠ACB==,
故答案为:.
【点评】题考查了锐角三角函数的定义,属于基础题,关键是掌握锐角三角函数的定义.
18.已知∠A为锐角,且,那么∠A的范围是 60°≤A<90° .
【分析】首先明确cos60°=,再根据余弦函数值随角增大而减小进行分析.
【解答】解:∵cos60°=,余弦函数值随角增大而减小,
∴当cosA≤时,∠A≥60°.
又∵∠A是锐角,
∴60°≤∠A<90°.
故答案为:60°≤A<90°.
【点评】本题考查了锐角三角函数的增减性.熟记特殊角的三角函数值,了解锐角三角函数的增减性是解题的关键.
三.解答题(共8小题)
19.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;
(3)当t为何值时,△DEF为直角三角形?请说明理由.
【分析】(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;
(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;
(3)分两种情况讨论即可求解.
【解答】(1)证明:∵直角△ABC中,∠C=90°﹣∠A=30°.
∵CD=4t,AE=2t,
又∵在直角△CDF中,∠C=30°,
∴DF=CD=2t,
∴DF=AE;
解:(2)∵DF∥AB,DF=AE,
∴四边形AEFD是平行四边形,
当AD=AE时,四边形AEFD是菱形,
即60﹣4t=2t,
解得:t=10,
即当t=10时,?AEFD是菱形;
(3)当t=时△DEF是直角三角形(∠EDF=90°);
当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:
当∠EDF=90°时,DE∥BC.
∴∠ADE=∠C=30°
∴AD=2AE
∵CD=4t,
∴DF=2t=AE,
∴AD=4t,
∴4t+4t=60,
∴t=时,∠EDF=90°.
当∠DEF=90°时,DE⊥EF,
∵四边形AEFD是平行四边形,
∴AD∥EF,
∴DE⊥AD,
∴△ADE是直角三角形,∠ADE=90°,
∵∠A=60°,
∴∠DEA=30°,
∴AD=AE,
AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,
∴60﹣4t=t,
解得t=12.
综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).
【点评】本题考查了直角三角形的性质,菱形的判定与性质,正确利用t表示DF、AD的长是关键.
20.如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.
【分析】在Rt△ABF中,∠A=70,CE,BF是两条高,求得∠EBF的度数,在Rt△BCF中∠FBC=40°求得∠FBC的度数.
【解答】解:在Rt△ABF中,∠A=70,CE,BF是两条高,
∴∠EBF=20°,∠ECA=20°,
又∵∠BCE=30°,
∴∠ACB=50°,
∴在Rt△BCF中∠FBC=40°.
【点评】本题考查了直角三角形的性质,三角形内角和定理,熟练掌握直角三角形的性质是解题的关键.
21.如图,在△ACB中,∠ACB=90゜,CD⊥AB于D.
(1)求证:∠ACD=∠B;
(2)若AF平分∠CAB分别交CD、BC于E、F,求证:∠CEF=∠CFE.
【分析】(1)由于∠ACD与∠B都是∠BCD的余角,根据同角的余角相等即可得证;
(2)根据直角三角形两锐角互余得出∠CFA=90°﹣∠CAF,∠AED=90°﹣∠DAE,再根据角平分线的定义得出∠CAF=∠DAE,然后由对顶角相等的性质,等量代换即可证明∠CEF=∠CFE.
【解答】证明:(1)∵∠ACB=90゜,CD⊥AB于D,
∴∠ACD+∠BCD=90°,∠B+∠BCD=90°,
∴∠ACD=∠B;
(2)在Rt△AFC中,∠CFA=90°﹣∠CAF,
同理在Rt△AED中,∠AED=90°﹣∠DAE.
又∵AF平分∠CAB,
∴∠CAF=∠DAE,
∴∠AED=∠CFE,
又∵∠CEF=∠AED,
∴∠CEF=∠CFE.
【点评】本题考查了直角三角形的性质,三角形角平分线的定义,对顶角的性质,余角的性质,难度适中.
22.如图所示,在△ABC中,已知AD⊥BC,∠B=64°,∠C=56°,
(1)求∠BAD和∠DAC的度数;
(2)若DE平分∠ADB,求∠AED的度数.
【分析】(1)①在Rt△BAD中,根据直角三角形的两个锐角互余的性质求解;
②在Rt△BAD中,根据直角三角形的两个锐角互余的性质求解;
(2)由DE平分∠ADB,AD⊥BC求得∠BDE=45°,再根据外角定理求解即可.
【解答】解:(1)∵AD⊥BC,
①∴在Rt△BAD中,∠BAD+∠B=90°,
又∵∠B=64°,
∴∠BAD=26°;
②∴在Rt△BAD中,
∠DAC+∠C=90°,
又∵∠C=56°,
∴∠DAC=34°;
(2)∵AD⊥BC,DE平分∠ADB,
∴∠BDE=45°;
在△BED中,∠B=64°,
∴∠B+∠BDE=109°;
∵∠AED=∠B+∠BDE,
∴∠AED=109°.
【点评】(1)考查了直角三角形的两个锐角互余的性质;(2)考查的是角平分线的定义以及外角定理.
23.如图,定义:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα==,根据上述角的余切定义,解下列问题:
(1)ctan30°= ;
(2)如图,已知tanA=,其中∠A为锐角,试求ctanA的值.
【分析】(1)根据直角三角形的性质用AC表示出AB及AC的值,再根据锐角三角函数的定义进行解答即可;
(2)由于tanA=,所以可设BC=3x,AC=4x,则AB=5x,再根据锐角三角函数的定义进行解答即可.
【解答】解:(1)∵Rt△ABC中,α=30°,
∴BC=AB,
∴AC===AB,
∴ctan30°==.
故答案为:;
(2)∵tanA=,
∴设BC=3x,AC=4x,
∴ctanA===.
【点评】本题考查的是锐角三角函数的定义及直角三角形的性质,熟知锐角三角函数的定义是解答此题的关键.
24.下列关系式是否成立(0<α<90°),请说明理由.
(1)sinα+cosα≤1;
(2)sin2α=2sinα.
【分析】(1)利用三角函数的定义和三角形的三边关系得到该结论不成立;
(2)举出反例进行论证.
【解答】解:(1)该不等式不成立,理由如下:
如图,在△ABC中,∠B=90°,∠C=α.
则sinα+cosα=+=>1,故sinα+cosα≤1不成立;
(2)该等式不成立,理由如下:
假设α=30°,则sin2α=sin60°=,2sinα=2sin30°=2×=1,
∵≠1,
∴sin2α≠2sinα,即sin2α=2sinα不成立.
【点评】本题考查了同角三角函数的关系.解题的关键是掌握锐角三角函数的定义和特殊角的三角函数值.
25.小明在某次作业中得到如下结果:
sin27°+sin283°≈0.122+0.992=0.9945,
sin222°+sin268°≈0.372+0.932=1.0018,
sin229°+sin261°≈0.482+0.872=0.9873,
sin237°+sin253°≈0.602+0.802=1.0000,
sin245°+sin245°=()2+()2=1.
据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.
(Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;
(Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.
【分析】(1)将α=30°代入,根据三角函数值计算可得;
(2)设∠A=α,则∠B=90°﹣α,根据正弦函数的定义及勾股定理即可验证.
【解答】解:(1)当α=30°时,
sin2α+sin2(90°﹣α)
=sin230°+sin260°
=()2+()2
=+
=1;
(2)小明的猜想成立,证明如下:
如图,在△ABC中,∠C=90°,
设∠A=α,则∠B=90°﹣α,
∴sin2α+sin2(90°﹣α)
=()2+()2
=
=
=1.
【点评】本题主要考查特殊锐角的三角函数值及正弦函数的定义,熟练掌握三角函数的定义及勾股定理是解题的关键.
26.计算:4sin260°+tan45°﹣8cos230°.
【分析】分别把各特殊角的三角函数值代入,再根据二次根式混合运算的法则进行计算即可.
【解答】解:原式=4×()2+1﹣8×()2
=4×+1﹣8×
=3+1﹣6
=﹣2.
【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.