2020年华师大版九年级上册数学《第25章 随机事件的概率》单元测试卷(解析版)

文档属性

名称 2020年华师大版九年级上册数学《第25章 随机事件的概率》单元测试卷(解析版)
格式 zip
文件大小 374.0KB
资源类型 教案
版本资源 华东师大版
科目 数学
更新时间 2020-01-03 20:20:30

图片预览

文档简介

2020年华师大版九年级上册数学《第25章 随机事件的概率》单元测试卷
一.选择题(共10小题)
1.下列说法正确的是(  )
A.若一个游戏的中奖率是,则连续做10次这样的游戏一定会有一次中奖
B.为了解全国中学生的心理健康情况,应该采用普查的方式
C.一组数据6,8,7,8,8,9,10的众数和中位数都是8
D.若甲、乙组两组数据的方差分别是s甲2=0.01,s乙2=0.1,则乙组数据更稳定
2.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为(  )
A.1 B. C. D.
3.在一个不透明的口袋中有若干个只有颜色不同的球,如果口袋中装有4个黄球,且摸出黄球的概率为,那么袋中共有球的个数为(  )
A.6个 B.7个 C.9个 D.12个
4.如图,在3×3的方格中,点A、B、C、D、E、F都是格点,从A、D、E、F四点中任意取一点,以所取点及B、C为顶点画三角形,所画三角形是直角三角形的概率是(  )

A. B. C. D.
5.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是(  )

A. B. C. D.
6.图中有四个可以自由转动的转盘,每个转盘被分成若干等分,转动转盘,当转盘停止后,指针指向白色区域的概率相同的是(  )

A.转盘2与转盘3 B.转盘2与转盘4
C.转盘3与转盘4 D.转盘1与转盘4
7.从长度分别为2,4,6,8的四条线段中任选三条作边,能构成三角形的概率为(  )
A. B. C. D.
8.有两组扑克牌各三张,牌面数字均为1,2,3,随意从每组牌中各抽一张,数字之和等于4的概率是(  )
A. B. C. D.
9.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为(  )
A.20 B.30 C.40 D.50
10.用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是(  )
A.种植10棵幼树,结果一定是“有9棵幼树成活”
B.种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”
C.种植10n棵幼树,恰好有“n棵幼树不成活”
D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.9
二.填空题(共8小题)
11.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为   .
12.事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是   .
13.有两组扑克牌各三张,牌面数字分别为2,3,4,随意从每组牌中抽取一张,数字和是6的概率是   .
14.在一个不透明的口袋中,装有2个黄球,3个红球和5个白球,它们除颜色外其他均相同,从袋中任意摸出一个球,是白球的概率是   .
15.如图的转盘,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率是   .

16.如图所示是一条线段,AB的长为10厘米,MN的长为2厘米,假设可以随意在这条线段上取一个点,那么这个点取在线段MN上的概率为   .

17.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8.同时掷这两枚骰子,则其朝上的面两数字之和为奇数5的概率是   .
18.从甲、乙、丙、丁4名学生中随机抽取2名学生担任数学小组长,则抽取到甲和乙概率为   .
三.解答题(共8小题)
19.将下面事件的字母写在最能代表它的概率的点上.

A:投掷一枚硬币时,得到一个正面;B:在一小时内,你步行可以走80千米;
C:给你一个骰子中,你掷出一个3;D:明天太阳会升起来.
20.下列三种说法:
(1)三条任意长的线段都可以组成一个三角形;
(2)任意掷一枚均匀的硬币,正面一定朝上;
(3)购买一张彩票可能中奖.
其中,正确说法的序号是   .
21.Windows2000下有一个有趣的游戏“扫雷”,下图是扫雷游戏的一部分:(说明:图中数字2表示在以该数字为中心的8个方格中有2个地雷).小旗表示该方格已被探明有地雷,现在还剩下A、B、C三个方格未被探明,其它地方为安全区(包括有数字的方格)
(1)现在还剩下几个地雷?
(2)A、B、C三个方格中有地雷的概率分别是多大?

22.甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:
甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;
乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过
40,超过部分每件多提成2元.
如图是今年四月份甲公司揽件员人均揽件数和乙公司揽件员人均揽件数的条形统计图:

(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;
(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的
揽件数,解决以下问题:
①估计甲公司各揽件员的日平均揽件数;
②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.
23.超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖机会.摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、40元.一次性购物满300元者,如果不摇奖可返还现金15元.
(1)摇奖一次,获一等奖的概率是多少?
(2)老李一次性购物满了300元,他是参与摇奖划算还是领15元现金划算,请你帮他算算.

24.甲、乙两人打赌,甲说,往图中的区域掷石子,它会落在阴影部分上,乙说决不会落在阴影部分上,你认为谁获胜的概率较大?通过计算说明.

25.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.
(2)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.
26.有两把不同的锁和三把不同的钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?



2020年华师大版九年级上册数学《第25章 随机事件的概率》单元测试卷
参考答案与试题解析
一.选择题(共10小题)
1.下列说法正确的是(  )
A.若一个游戏的中奖率是,则连续做10次这样的游戏一定会有一次中奖
B.为了解全国中学生的心理健康情况,应该采用普查的方式
C.一组数据6,8,7,8,8,9,10的众数和中位数都是8
D.若甲、乙组两组数据的方差分别是s甲2=0.01,s乙2=0.1,则乙组数据更稳定
【分析】根据概率的意义,可判断A,根据调查方式,可判断B;根据众数、中位数的意义,可判断C;根据方差的性质,可判断D.
【解答】解:A、若一个游戏的中奖率是,则连续做10次这样的游戏可能中奖,也可能不中奖,故A不符合题意;
B、为了解全国中学生的心理健康情况,应该采用抽样调查的方式,故B不符合题意;
C、一组数据6,8,7,8,8,9,10的众数和中位数都是8,故C符合题意;
D、若甲、乙组两组数据的方差分别是s甲2=0.01,s乙2=0.1,则甲组数据更稳定,故D不符合题意;
故选:C.
【点评】本题考查了概率的意义,利用概率的意义、调查方式,众数、中位数的意义,方差的性质是解题关键.
2.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为(  )
A.1 B. C. D.
【分析】直接利用概率的意义分析得出答案.
【解答】解:因为一枚质地均匀的硬币只有正反两面,
所以不管抛多少次,硬币正面朝上的概率都是,
故选:B.
【点评】此题主要考查了概率的意义,明确概率的意义是解答的关键.
3.在一个不透明的口袋中有若干个只有颜色不同的球,如果口袋中装有4个黄球,且摸出黄球的概率为,那么袋中共有球的个数为(  )
A.6个 B.7个 C.9个 D.12个
【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【解答】解:设袋中共有球数为x,根据概率的公式列出方程:=,
解得:x=12.
故选:D.
【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
4.如图,在3×3的方格中,点A、B、C、D、E、F都是格点,从A、D、E、F四点中任意取一点,以所取点及B、C为顶点画三角形,所画三角形是直角三角形的概率是(  )

A. B. C. D.
【分析】找出从A、D、E、F四点中任意取一点组成直角三角形的个数,再根据概率公式即可得出结论.
【解答】解:∵A、B、C;D、B、C;E、B、C三种取法三点可组成直角三角形,
∴从A、D、E、F四点中任意取一点,以所取点及B、C为顶点画三角形是直角三角形的概率=.
故选:C.
【点评】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.
5.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是(  )

A. B. C. D.
【分析】两个同心圆被均分成八等份,飞镖落在每一个区域的机会是均等的,由此计算出黑色区域的面积,利用几何概率的计算方法解答即可.
【解答】解:因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,
所以P(飞镖落在黑色区域)==.
故选:D.
【点评】此题主要考查几何概率的意义:一般地,对于古典概型,如果试验的基本事件为n,随机事件A所包含的基本事件数为m,我们就用来描述事件A出现的可能性大小,称它为事件A的概率,记作P(A),即有 P(A)=.
6.图中有四个可以自由转动的转盘,每个转盘被分成若干等分,转动转盘,当转盘停止后,指针指向白色区域的概率相同的是(  )

A.转盘2与转盘3 B.转盘2与转盘4
C.转盘3与转盘4 D.转盘1与转盘4
【分析】根据概率公式分别求出指针指向白色区域的概率进而得出答案.
【解答】解:转盘1指针指向白色区域的概率为:;
转盘2指针指向白色区域的概率为:=;
转盘3指针指向白色区域的概率为:=;
转盘4指针指向白色区域的概率为:=,
故当转盘停止后,指针指向白色区域的概率相同的是:转盘1与转盘4.
故选:D.
【点评】此题主要考查了几何概率,正确根据概率公式求出是解题关键.
7.从长度分别为2,4,6,8的四条线段中任选三条作边,能构成三角形的概率为(  )
A. B. C. D.
【分析】首先根据题意,可列举出所有等可能的结果,又由能构成三角形的只有4,6,8,直接利用概率公式求解即可求得答案.
【解答】解:∵从长度分别为2,4,6,8的四条线段中任选三条作边,等可能的结果有:2,4,6; 2,4,8; 2,6,8; 4,6,8;
其中能构成三角形的只有4,6,8;
∴能构成三角形的概率为:.
故选:C.
【点评】此题考查了列举法求概率的知识.注意不重不漏的列举出所有等可能的结果是关键.
8.有两组扑克牌各三张,牌面数字均为1,2,3,随意从每组牌中各抽一张,数字之和等于4的概率是(  )
A. B. C. D.
【分析】列举出所有情况,看数字之和等于4的情况数占总情况数的多少即可.
【解答】解:列表得:
1 2 3
1 1+1=2 2+1=3 3+1=4
2 1+2=3 2+2=4 3+2=5
3 1+3=4 2+3=5 3+3=6
∴一共存在9种情况,数字之和等于4的有3种情况,
∴随意从每组牌中各抽一张,数字之和等于4的概率是=.
故选:B.
【点评】列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
9.已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为(  )
A.20 B.30 C.40 D.50
【分析】根据黑球的频率稳定在0.4附近得到黑球的概率约为0.4,根据概率公式列出方程求解可得.
【解答】解:根据题意得=0.4,
解得:n=20,
故选:A.
【点评】此题考查了利用频率估计概率,解答此题的关键是了解黑球的频率稳定在0.4附近即为概率约为0.4.
10.用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是(  )
A.种植10棵幼树,结果一定是“有9棵幼树成活”
B.种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”
C.种植10n棵幼树,恰好有“n棵幼树不成活”
D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.9
【分析】根据用频率估计概率的意义即可确定正确的选项.
【解答】解:用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,是在大量重复实验中得到的概率的近似值,
故A、B、C错误,D正确,
故选:D.
【点评】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
二.填空题(共8小题)
11.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为  .
【分析】求出一次抛一枚硬币正面朝上的概率即可.
【解答】解:∵抛硬币正反出现的概率是相同的,不论抛多少次出现正面或反面的概率是一致的,
∴正面向上的概率为.
故答案为:.
【点评】本题考查的是概率的意义,注意抛硬币只有两种情况,每次抛出的概率都是一致的,与次数无关.
12.事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是 5 .
【分析】根据概率的意义解答即可.
【解答】解:事件A发生的概率为,大量重复做这种试验,
则事件A平均每100次发生的次数为:100×=5.
故答案为:5.
【点评】本题考查了概率的意义,熟记概念是解题的关键.
13.有两组扑克牌各三张,牌面数字分别为2,3,4,随意从每组牌中抽取一张,数字和是6的概率是  .
【分析】列举出所有情况,看所求的情况占总情况的多少即可.
【解答】解:每组各有3张牌,那么共有3×3=9种情况,
数字之和等于6的有(2,4)(3,3),(4,2)3种情况,
那么数字和是6的概率是.
【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m÷n,注意本题是放回实验.
14.在一个不透明的口袋中,装有2个黄球,3个红球和5个白球,它们除颜色外其他均相同,从袋中任意摸出一个球,是白球的概率是  .
【分析】由题意可得,共有10可能的结果,其中从口袋中任意摸出一个球是白球的有5情况,利用概率公式即可求得答案.
【解答】解:∵从装有2个黄球、3个红球和5个白球的袋中任意摸出一个球有10种等可能结果,
其中摸出的球是白球的结果有5种,
∴从袋中任意摸出一个球,是白球的概率是=,
故答案为
【点评】此题考查了概率公式,明确概率的意义是解答问题的关键,用到的知识点为:概率=所求情况数与总情况数之比.
15.如图的转盘,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率是  .

【分析】转盘被分长面积相等的6个扇形,而阴影部分占其中4个扇形,根据几何概率的计算方法,用4个扇形面积除以6个扇形的面积即可得到指针落在阴影区域内的概率.
【解答】解:指针落在阴影区域内的概率==.
故答案为.
【点评】本题考查了几何概率:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
16.如图所示是一条线段,AB的长为10厘米,MN的长为2厘米,假设可以随意在这条线段上取一个点,那么这个点取在线段MN上的概率为  .

【分析】先确定线段MN的长在线段AB的长度中所占的比例,根据此比例即可解答.
【解答】解:AB间距离为10,MN的长为2,故以随意在这条线段上取一个点,那么这个点取在线段MN上的概率为=.
【点评】用到的知识点为:概率=所求情况数与总情况数之比.
17.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8.同时掷这两枚骰子,则其朝上的面两数字之和为奇数5的概率是  .
【分析】利用列表法求出所有的举朝上的面两数字之和,得出5的个数,即能得出朝上的面两数字之和为奇数5的概率.
【解答】解:∵正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8,用列表法列举朝上的面两数字之和所有可能是:
∴朝上的面两数字之和为奇数5的概率是:=.
故答案为:.

【点评】此题主要考查了用列举法求概率,列举出所有的可能结果是解决问题的关键.
18.从甲、乙、丙、丁4名学生中随机抽取2名学生担任数学小组长,则抽取到甲和乙概率为  .
【分析】根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.
【解答】解:画树形图得:

∵一共有12种情况,抽取到甲和乙的有2种,
∴P(抽到甲和乙)==.
故答案为:.
【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
三.解答题(共8小题)
19.将下面事件的字母写在最能代表它的概率的点上.

A:投掷一枚硬币时,得到一个正面;B:在一小时内,你步行可以走80千米;
C:给你一个骰子中,你掷出一个3;D:明天太阳会升起来.
【分析】根据随机事件概率大小的求法,找准两点:
①、符合条件的情况数目;
②、全部情况的总数.
二者的比值就是其发生的概率的大小.
【解答】解:A、投掷一枚硬币时,得到一个正面的概率=0.5;
B、在一小时内,你步行可以走80千米是不可能事件,概率为0;
C、给你一个骰子中,你掷出一个3的概率是;
D、明天太阳会升起来是必然事件,概率为1.
所以将下面事件的字母写在最能代表它的概率的点上如图所示:

【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.注意必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1.
20.下列三种说法:
(1)三条任意长的线段都可以组成一个三角形;
(2)任意掷一枚均匀的硬币,正面一定朝上;
(3)购买一张彩票可能中奖.
其中,正确说法的序号是 (3) .
【分析】根据题意,首先分析三种说法中表述的事件是随机事件,再由随机事件的意义可得答案.
【解答】解:根据题意,(1)(2)(3)中表述的均是随机事件,即可能发生也可能不发生的事件;
故正确的是(3),(1)(2)都是错误的;
故答案为(3).
【点评】本题要求学生弄清随机事件和必然事件的概念.随机事件是指在一定条件下,可能发生也可能不发生的事件.
21.Windows2000下有一个有趣的游戏“扫雷”,下图是扫雷游戏的一部分:(说明:图中数字2表示在以该数字为中心的8个方格中有2个地雷).小旗表示该方格已被探明有地雷,现在还剩下A、B、C三个方格未被探明,其它地方为安全区(包括有数字的方格)
(1)现在还剩下几个地雷?
(2)A、B、C三个方格中有地雷的概率分别是多大?

【分析】(1)由于B、C下面标2,说明它们为中心的8个方格中有2个地雷,而C的右边已经有一个,所以A的周围还有一个,而B的下面标2,所以还有两个地雷;
(2)由于A、B、C三个方格中还有两个地雷,并且B、C下面方格是数字2,所以A一定是地雷,B、C都有可能,一次即可确定A、B、C三个方格中有地雷的概率.
【解答】解:(1)由于B、C下面标2,说明它们为中心的8个方格中有2个地雷,而C的右边已经有一个,
∴A就是一个地雷,还有一个可能在B、C的位置,
∴现在还剩下2个地雷;(2分)

(2)根据(1)得
P(A有地雷)=1(3分),
P(B有地雷)=(5分),
P(C有地雷)=(7分).
【点评】此题主要考查了概率公式在实际问题中的运用,解题的关键是正确理解题意,然后根据题目隐含的数量关系解决问题.
22.甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:
甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;
乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过
40,超过部分每件多提成2元.
如图是今年四月份甲公司揽件员人均揽件数和乙公司揽件员人均揽件数的条形统计图:

(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;
(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的
揽件数,解决以下问题:
①估计甲公司各揽件员的日平均揽件数;
②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.
【分析】(1)根据概率公式计算可得;
(2)分别根据平均数的定义及其意义解答可得.
【解答】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,
所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;

(2)①甲公司各揽件员的日平均件数为=39件;
②甲公司揽件员的日平均工资为70+39×2=148元,
乙公司揽件员的日平均工资为
=[40+]×4+×6
=159.4元,
因为159.4>148,
所以仅从工资收入的角度考虑,小明应到乙公司应聘.
【点评】本题主要考查概率公式,解题的关键是掌握概率=所求情况数与总情况数之比及平均数的定义及其意义.
23.超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖机会.摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、40元.一次性购物满300元者,如果不摇奖可返还现金15元.
(1)摇奖一次,获一等奖的概率是多少?
(2)老李一次性购物满了300元,他是参与摇奖划算还是领15元现金划算,请你帮他算算.

【分析】(1)找到红色区域的份数占总份数的多少即为获得一等奖的概率,
(2)游戏是否合算,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.
【解答】解:(1)整个圆周被分成了16份,红色为1份,
∴获得一等奖的概率为:,

(2)转转盘:60×+50×+40×=20元,
∵20元>15元,
∴转转盘划算.
【点评】本题主要考查了古典型概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.
24.甲、乙两人打赌,甲说,往图中的区域掷石子,它会落在阴影部分上,乙说决不会落在阴影部分上,你认为谁获胜的概率较大?通过计算说明.

【分析】首先确定阴影的面积在整个正方形中占的比例,根据这个比例即可求出飞镖落在阴影部分的概率.
【解答】解:甲获胜的概率为:=,
乙获胜的概率为:=.
可见乙获胜的概率大.
【点评】将概率的求解设置于石子随意投中如图所示的正方形木板的游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.概率=所求情况数与总情况数之比.
25.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.
(1)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.
(2)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.
【分析】(1)由题意可得共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,则可利用概率公式求解即可求得答案;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式求解即可求得答案.
【解答】解:(1)∵共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,
∴P(恰好选中乙同学)=;

(2)画树状图得:

∵所有出现的等可能性结果共有12种,其中满足条件的结果有2种.
∴P(恰好选中甲、乙两位同学)=.
【点评】此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
26.有两把不同的锁和三把不同的钥匙,其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁,随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?
【分析】根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率.
【解答】解:列表得:
锁1 锁2
钥匙1 (锁1,钥匙1) (锁2,钥匙1)
钥匙2 (锁1,钥匙2) (锁2,钥匙2)
钥匙3 (锁1,钥匙3) (锁2,钥匙3)
由表可知,所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,
则P(一次打开锁)==.
【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.