(新教材)2019-2020学年新素养同步人教A版高中数学必修第二册学案:6.3.5 平面向量数量积的坐标表示Word版含答案

文档属性

名称 (新教材)2019-2020学年新素养同步人教A版高中数学必修第二册学案:6.3.5 平面向量数量积的坐标表示Word版含答案
格式 zip
文件大小 289.9KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2020-01-06 16:56:48

图片预览

文档简介

6.3.5 平面向量数量积的坐标表示
考点
学习目标
核心素养
平面向量数量积的坐标表示
掌握平面向量数量积的坐标表示,
会用向量的坐标形式求数量积
数学运算
平面向量的模与夹角的坐标表示
能根据向量的坐标计算向量的模、
夹角及判定两个向量垂直
数学运算、逻辑推理
问题导学
预习教材P34-P35的内容,思考以下问题:
1.平面向量数量积的坐标表示是什么?
2.如何用坐标表示向量的模、夹角和垂直?
1.平面向量数量积的坐标表示
已知a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.
即两个向量的数量积等于它们对应坐标的乘积的和.
■名师点拨
公式a·b=|a||b|cos〈a,b〉与a·b=x1x2+y1y2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.
2.两个公式、一个充要条件
(1)向量的模长公式:若a=(x,y),则|a|=.
(2)向量的夹角公式:设a,b都是非零向量,a=(x1,y1),b=(x2,y2),θ是a与b的夹角,则cos θ==.
(3)两个向量垂直的充要条件
设非零向量a=(x1,y1),b=(x2,y2),则a⊥b?x1x2+y1y2=0.
■名师点拨
若A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1),
||=,即A,B两点间的距离为.
判断(正确的打“√”,错误的打“×”)
(1)向量的模等于向量坐标的平方和.(  )
(2)||的计算公式与A,B两点间的距离公式是一致的.(  )
答案:(1)× (2)√
已知a=(-3,4),b=(5,2),则a·b的值是(  )
A.23    B.7    C.-23    D.-7
答案:D
已知向量a=(1,-2),b=(x,2),若a⊥b,则x=(  )
A.1 B.2
C.4 D.-4
答案:C
已知a=(,1),b=(-,1),则向量a,b的夹角θ=______.
答案:120°
数量积的坐标运算
 已知向量a=(1,-1),b=(-1,2),则(2a+b)·a=(  )
A.-1          B.0
C.1 D.2
【解析】 因为a=(1,-1),b=(-1,2),
所以(2a+b)·a=(1,0)·(1,-1)=1.
【答案】 C
数量积坐标运算的两个途径
一是先将各向量用坐标表示,直接进行数量积运算;二是先利用数量积的运算律将原式展开,再依据已知计算. 
1.设向量a=(1,-2),向量b=(-3,4),向量c=(3,2),则向量(a+2b)·c=(  )
A.(-15,12) B.0   C.-3    D.-11
解析:选C.依题意可知,
a+2b=(1,-2)+2(-3,4)=(-5,6),
所以(a+2b)·c=(-5,6)·(3,2)=-5×3+6×2=-3.
2.已知正方形ABCD的边长为2,E为CD的中点,点F在AD上,=2,则·=________.
解析:建立平面直角坐标系如图所示,则A(0,2),E(2,1),D(2,2),B(0,0),C(2,0),
因为=2,所以F(,2).
所以=(2,1),=(,2)-(2,0)=(-,2),
所以·=(2,1)·(-,2)
=2×(-)+1×2=.
答案:
平面向量的模
 (1)设平面向量a=(1,2),b=(-2,y),若a∥b则|3a+b|等于(  )
A. B.
C. D.
(2)已知|a|=2,b=(2,-3),若a⊥b,求a+b的坐标及|a+b|.
【解】 (1)选A.因为a∥b,所以1×y-2×(-2)=0,
解得y=-4,从而3a+b=(1,2),|3a+b|=.
(2)设a=(x,y),
则由|a|=2,得x2+y2=52.①
由a⊥b,解得2x-3y=0.②
联立①②,解得或
所以 a=(6,4)或a=(-6,-4).
所以a+b=(8,1)或a+b=(-4,-7),
所以|a+b|=.
求向量的模的两种基本策略
(1)字母表示下的运算
利用|a|2=a2,将向量的模的运算转化为向量与向量的数量积的问题.
(2)坐标表示下的运算
若a=(x,y),则a·a=a2=|a|2=x2+y2,于是有|a|= . 
 已知点A(0,1),B(1,-2),向量=(4,-1),则||=________.
解析:设C(x,y),因为点A(0,1),向量=(4,-1),所以=(x,y-1)=(4,-1),所以解得x=4,y=0,所以C(4,0),
所以=(3,2),||==.
答案:
平面向量的夹角(垂直)
 已知a=(4,3),b=(-1,2).
(1)求a与b夹角的余弦值;
(2)若(a-λb)⊥(2a+b),求实数λ的值.
【解】 (1)因为a·b=4×(-1)+3×2=2,
|a|==5,|b|==,设a与b的夹角为θ,所以cos θ===.
(2)因为a-λb=(4+λ,3-2λ),2a+b=(7,8),
又(a-λb)⊥(2a+b),
所以7(4+λ)+8(3-2λ)=0,所以λ=.
利用数量积求两向量夹角的步骤
 
1.已知向量a=(1,),b=(3,m).若向量a,b的夹角为,则实数m=(  )
A.2         B.
C.0 D.-
解析:选B.因为a=(1,),b=(3,m).所以|a|=2,|b|=,a·b=3+m,
又a,b的夹角为,所以=cos ,即=,所以+m=,解得m=.
2.已知A(-2,1),B(6,-3),C(0,5),则△ABC的形状是(  )
A.直角三角形 B.锐角三角形
C.钝角三角形 D.等边三角形
解析:选A.由题设知=(8,-4),=(2,4),=(-6,8),所以·=2×8+(-4)×4=0,即⊥.所以∠BAC=90°,故△ABC是直角三角形.
1.已知向量a=(2,0),a-b=(3,1),则下列结论正确的是(  )
A.a·b=2         B.a∥b
C.b⊥(a+b) D.|a|=|b|
解析:选C.因为向量a=(2,0),a-b=(3,1),设b=(x,y),则解得所以b=(-1,-1),a+b=(1,-1),b·(a+b)=-1×1+(-1)×(-1)=0,所以b⊥(a+b).
2.在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,-2),=(2,1),则·=________.
解析:由四边形ABCD为平行四边形,知=+=(3,-1),故·=(2,1)·(3,-1)=5.
答案:5
3.已知a=(1,),b=(2,m).
(1)当3a-2b与a垂直时,求m的值;
(2)当a与b的夹角为120°时,求m的值.
解:(1)由题意得3a-2b=(-1,3-2m),
由3a-2b与a垂直,得-1+9-2m=0,
所以m=.
(2)由题意得|a|=2,|b|=,a·b=2+m,
所以cos 120°===-,
整理得2+m+=0,
化简得m2+2m=0,
解得m=-2或m=0(舍去).
所以m=-2.
[A 基础达标]
1.已知向量a=(2,1),b=(-1,k),a·(2a-b)=0,则k=(  )
A.-12          B.-6
C.6 D.12
解析:选D.2a-b=(4,2)-(-1,k)=(5,2-k),由a·(2a-b)=0,得(2,1)·(5,2-k)=0,所以10+2-k=0,解得k=12.
2.已知向量a=(1,n),b=(-1,n),若2a-b与b垂直,则|a|等于(  )
A.0 B.1
C.-2 D.2
解析:选D.2a-b=(3,n),由2a-b与b垂直可得(3,n)·(-1,n)=-3+n2=0,所以n2=3,所以|a|=2.
3.已知平面向量a=(2,4),b=(-1,2),若c=a-(a·b)b,则|c|等于(  )
A.4 B.2
C.8 D.8
解析:选D.易得a·b=2×(-1)+4×2=6,所以c=(2,4)-6(-1,2)=(8,-8),所以|c|==8.
4.(2019·河北衡水中学检测)设向量a=(,1),b=(x,-3),c=(1,-),若b∥c,则a-b与b的夹角为(  )
A.30° B.60°
C.120° D.150°
解析:选D.因为b∥c,所以-x=(-3)×1,所以x=,所以b=(,-3),a-b=(0,4).所以a-b与b的夹角的余弦值为==-,所以a-b与b的夹角为150°.
5.已知O为坐标原点,向量=(2,2),=(4,1),在x轴上有一点P使得·有最小值,则点P的坐标是(  )
A.(-3,0)        B.(2,0)
C.(3,0) D.(4,0)
解析:选C.设点P的坐标为(x,0),则=(x-2,-2),=(x-4,-1).
·=(x-2)(x-4)+(-2)×(-1)
=x2-6x+10=(x-3)2+1,
所以当x=3时,·有最小值1.
此时点P的坐标为(3,0).
6.设a=(m+1,-3),b=(1,m-1),若(a+b)⊥(a-b),则m=________.
解析:a+b=(m+1,-3)+(1,m-1)=(m+2,m-4),
a-b=(m+1,-3)-(1,m-1)=(m,-2-m),
因为(a+b)⊥(a-b),所以(a+b)·(a-b)=0,
即(m+2,m-4)·(m,-m-2)=0,
所以m2+2m-m2+2m+8=0,解得m=-2.
答案:-2
7.(2019·陕西咸阳检测)已知向量a=(-2,1),b=(λ,),且|λa+b|=,则λ=________.
解析:由已知易得λa+b=,则(-λ)2+=,解得λ=1或λ=-.
答案:1或-
8.已知向量a=(cos θ,sin θ),向量b=(,0),则|2a-b|的最大值为______.
解析:2a-b=(2cos θ-,2sin θ),
|2a-b|=
==,
当且仅当cos θ=-1时,|2a-b|取最大值2+.
答案:2+
9.已知a=(1,2),b=(-3,2).
(1)求a-b及|a-b|;
(2)若ka+b与a-b垂直,求实数k的值.
解:(1)a-b=(4,0),|a-b|==4.
(2)ka+b=(k-3,2k+2),a-b=(4,0),
因为ka+b与a-b垂直,
所以(ka+b)·(a-b)=4(k-3)+(2k+2)·0=0,
解得k=3.
10.(2019·重庆第一中学第一次月考)已知向量a,b,c是同一平面内的三个向量,其中a=(1,-1).
(1)若|c|=3,且c∥a,求向量c的坐标;
(2)若b是单位向量,且a⊥(a-2b),求a与b的夹角θ.
解:(1)设c=(x,y),由|c|=3,c∥a可得
所以或
故c=(-3,3)或c=(3,-3).
(2)因为|a|=,且a⊥(a-2b),所以a·(a-2b)=0,即a2-2a·b=0,所以a·b=1,故cos θ==,所以θ=.
[B 能力提升]
11.已知向量a=(1,2),b=(-2,-4),|c|=,若(a+b)·c=,则a与c的夹角大小为(  )
A.30° B.60°
C.120° D.150°
解析:选C.设a与c的夹角为θ,依题意,得
a+b=(-1,-2),|a|=.
设c=(x,y),因为(a+b)·c=,
所以x+2y=-.又a·c=x+2y,
所以cos θ====-,
所以a与c的夹角为120°.
12.在边长为1的正方形ABCD中,M为BC的中点,点E在线段AB上运动,则·的取值范围是(  )
A. B.
C. D.
解析:选C.以A为坐标原点建立如图所示的平面直角坐标系,设E(x,0),0≤x≤1.因为M,C(1,1),所以=,=(1-x,1),所以·=·(1-x,1)=(1-x)2+.因为0≤x≤1,所以≤(1-x)2+≤,即·的取值范围是.
13.已知点A,B,C满足||=3,||=4,||=5,则·+·+·的值为________.
解析:法一:(定义法)如图,根据题意可得△ABC为直角三角形,且B=,cos A=,cos C=,
所以·+·+·
=·+·
=4×5cos(π-C)+5×3cos(π-A)
=-20cos C-15cos A
=-20×-15×
=-25.
法二:(坐标法)如图,建立平面直角坐标系,
则A(3,0),B(0,0),C(0,4).
所以=(-3,0),=(0,4),=(3,-4).
所以·=-3×0+0×4=0,
·=0×3+4×(-4)=-16,
·=3×(-3)+(-4)×0=-9.
所以·+·+·=0-16-9=-25.
法三:(转化法)因为||=3,||=4,||=5,
所以AB⊥BC,所以·=0,
所以·+·+·=·(+)
=·=-||2=-25.
答案:-25
14.已知向量a=(1,),b=(-2,0).
(1)求a-b的坐标以及a-b与a之间的夹角;
(2)当t∈[-1,1]时,求|a-tb|的取值范围.
解:(1)因为向量a=(1,),b=(-2,0),
所以a-b=(1,)-(-2,0)=(3,),
所以cos〈a-b,a〉===.
因为〈a-b,a〉∈[0,π],所以向量a-b与a的夹角为.
(2)|a-tb|2=a2-2ta·b+t2b2=4t2+4t+4=4+3.易知当t∈[-1,1]时,|a-tb|2∈[3,12],所以|a-tb|的取值范围是[,2 ].
[C 拓展探究]
15.已知三个点A(2,1),B(3,2),D(-1,4).
(1)求证:AB⊥AD;
(2)要使四边形ABCD为矩形,求点C的坐标,并求矩形ABCD两条对角线所夹的锐角的余弦值.
解:(1)证明:因为A(2,1),B(3,2),D(-1,4),所以=(1,1),=(-3,3).
·=1×(-3)+1×3=0,
所以⊥,所以AB⊥AD.
(2)因为⊥,四边形ABCD为矩形,
所以=.
设点C的坐标为(x,y),则=(x+1,y-4).
又因为=(1,1),所以解得所以点C的坐标为(0,5).所以=(-2,4).
又=(-4,2),
所以||=2,||=2,
·=8+8=16.
设与的夹角为θ,
则cos θ===.
故矩形ABCD的两条对角线所夹的锐角的余弦值为.