7.1 复数的概念
7.1.1 数系的扩充和复数的概念
考点
学习目标
核心素养
复数的有关概念
了解数系的扩充过程,理解复数的概念
数学抽象
复数的分类
理解复数的分类
数学抽象
复数相等
掌握复数相等的充要条件及其应用
数学运算
问题导学
预习教材P68-P70的内容,思考以下问题:
1.复数是如何定义的?其表示方法又是什么?
2.复数分为哪两大类?
3.复数相等的条件是什么?
1.复数的有关概念
(1)复数的定义
形如a+bi(a,b∈R)的数叫做复数,其中i叫做虚数单位,满足i2=-1.
(2)复数集
全体复数所构成的集合C={a+bi|a,b∈R}叫做复数集.
(3)复数的表示方法
复数通常用字母z表示,即z=a+bi(a,b∈R),其中a叫做复数z的实部,b叫做复数z的虚部.
■名师点拨
对复数概念的三点说明
(1)复数集是最大的数集,任何一个数都可以写成a+bi(a,b∈R)的形式,其中0=0+0i.
(2)复数的虚部是实数b而非bi.
(3)复数z=a+bi只有在a,b∈R时才是复数的代数形式,否则不是代数形式.
2.复数相等的充要条件
在复数集C={a+bi|a,b∈R}中任取两个数a+bi,c+di(a,b,c,d∈R),我们规定:a+bi与c+di相等当且仅当a=c且b=d.
3.复数的分类
(1)复数z=a+bi(a,b∈R)
(2)复数集、实数集、虚数集、纯虚数集之间的关系
■名师点拨
复数bi(b∈R)不一定是纯虚数,只有当b≠0时,复数bi(b∈R)才是纯虚数.
判断(正确的打“√”,错误的打“×”)
(1)若a,b为实数,则z=a+bi为虚数.( )
(2)复数z1=3i,z2=2i,则z1>z2.( )
(3)复数z=bi是纯虚数.( )
(4)实数集与复数集的交集是实数集.( )
答案:(1)× (2)× (3)× (4)√
若z=a+(a2-1)i(a∈R,i为虚数单位)为实数,则a的值为( )
A.0 B.1
C.-1 D.1或-1
答案:D
以3i-的虚部为实部,以-3+i的实部为虚部的复数是( )
A.3-3i B.3+i
C.-+i D.+i
答案:A
若(x-2y)i=2x+1+3i,则实数x,y的值分别为________.
答案:- -
复数的概念
下列命题:
①若a∈R,则(a+1)i是纯虚数;
②若a,b∈R,且a>b,则a+i>b+i;
③若(x2-4)+(x2+3x+2)i是纯虚数,则实数x=±2;
④实数集是复数集的真子集.
其中正确的命题是( )
A.① B.②
C.③ D.④
【解析】 对于复数a+bi(a,b∈R),当a=0且b≠0时,为纯虚数.对于①,若a=-1,则(a+1)i不是纯虚数,即①错误;两个虚数不能比较大小,则②错误;对于③,若x=-2,则x2-4=0,x2+3x+2=0,此时(x2-4)+(x2+3x+2)i=0不是纯虚数,则③错误;显然,④正确.故选D.
【答案】 D
判断与复数有关的命题是否正确的方法
(1)举反例:判断一个命题为假命题,只要举一个反例即可,所以解答这种类型的题时,可按照“先特殊,后一般,先否定,后肯定”的方法进行解答.
(2)化代数形式:对于复数实部、虚部的确定,不但要把复数化为a+bi的形式,更要注意这里a,b均为实数时,才能确定复数的实部、虚部.
[提醒] 解答复数概念题,一定要紧扣复数的定义,牢记i的性质.
对于复数a+bi(a,b∈R),下列说法正确的是( )
A.若a=0,则a+bi为纯虚数
B.若a+(b-1)i=3-2i,则a=3,b=-2
C.若b=0,则a+bi为实数
D.i的平方等于1
解析:选C.对于A,当a=0时,a+bi也可能为实数;
对于B,若a+(b-1)i=3-2i,则a=3,b=-1;
对于D,i的平方为-1.故选C.
复数的分类
当实数m为何值时,复数z=+(m2-2m)i:(1)为实数?(2)为虚数?(3)为纯虚数?
【解】 (1)当即m=2时,复数z是实数.
(2)当m2-2m≠0且m≠0,即m≠0且m≠2时,复数z是虚数.
(3)当即m=-3时,复数z是纯虚数.
解决复数分类问题的方法与步骤
(1)化标准式:解题时一定要先看复数是否为a+bi(a,b∈R)的形式,以确定实部和虚部.
(2)定条件:复数的分类问题可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)即可.
(3)下结论:设所给复数为z=a+bi(a,b∈R),
①z为实数?b=0;
②z为虚数?b≠0;
③z为纯虚数?a=0且b≠0.
1.若复数a2-a-2+(|a-1|-1)i(a∈R)不是纯虚数,则( )
A.a=-1 B.a≠-1且a≠2
C.a≠-1 D.a≠2
解析:选C.复数a2-a-2+(|a-1|-1)i(a∈R)不是纯虚数,则有a2-a-2≠0或|a-1|-1=0,解得a≠-1.故选C.
2.当实数m为何值时,复数lg(m2-2m-7)+(m2+5m+6)i是:
(1)纯虚数;(2)实数.
解:(1)复数lg(m2-2m-7)+(m2+5m+6)i是纯虚数,则,解得m=4.
(2)复数lg(m2-2m-7)+(m2+5m+6)i是实数,则解得m=-2或m=-3.
复数相等
(1)(2019·浙江杭州期末考试)若z1=-3-4i,z2=(n2-3m-1)+(n2-m-6)i(m,n∈R),且z1=z2,则m+n=( )
A.4或0 B.-4或0
C.2或0 D.-2或0
(2)若log2(x2-3x-2)+ilog2(x2+2x+1)>1,则实数x的值是________.
【解析】 (1)由z1=z2,得n2-3m-1=-3且n2-m-6=-4,解得m=2,n=±2,所以m+n=4或0,故选A.
(2)因为log2(x2-3x-2)+ilog2(x2+2x+1)>1,
所以即解得x=-2.
【答案】 (1)A (2)-2
复数相等的充要条件
复数相等的充要条件是“化虚为实”的主要依据,多用来求解参数.解决复数相等问题的步骤是:分别分离出两个复数的实部和虚部,利用实部与实部相等、虚部与虚部相等列方程(组)求解.
[注意] 在两个复数相等的充要条件中,注意前提条件是a,b,c,d∈R,即当a,b,c,d∈R时,a+bi=c+di?a=c且b=d.若忽略前提条件,则结论不能成立.
已知A={1,2,a2-3a-1+(a2-5a-6)i},B={-1,3},A∩B={3},求实数a的值.
解:由题意知,a2-3a-1+(a2-5a-6)i=3(a∈R),
所以
即
所以a=-1.
1.若复数z=ai2-bi(a,b∈R)是纯虚数,则一定有( )
A.b=0 B.a=0且b≠0
C.a=0或b=0 D.ab≠0
解析:选B.z=ai2-bi=-a-bi,由纯虚数的定义可得a=0且b≠0.
2.若复数z=m2-1+(m2-m-2)i为实数,则实数m的值为( )
A.-1 B.2
C.1 D.-1或2
解析:选D.因为复数z=m2-1+(m2-m-2)i为实数,
所以m2-m-2=0,解得m=-1或m=2.
3.若复数z=(m+1)+(m2-9)i<0,则实数m的值等于____________.
解析:因为z<0,所以解得m=-3.
答案:-3
4.已知=(x2-2x-3)i(x∈R),则x=________.
解析:因为x∈R,所以∈R,
由复数相等的条件得
解得x=3.
答案:3
[A 基础达标]
1.以-3+i的虚部为实部,以3i+i2的实部为虚部的复数是( )
A.1-i B.1+i
C.-3+3i D.3+3i
解析:选A.-3+i的虚部为1,3i+i2=-1+3i的实部为-1,故所求复数为1-i.
2.在复平面内,复数z=(a2-2a)+(a2-a-2)i是纯虚数,则( )
A.a=0或a=2 B.a=0
C.a≠1且a≠2 D.a≠1或a≠2
解析:选B.因为复数z=(a2-2a)+(a2-a-2)i是纯虚数,所以a2-2a=0且a2-a-2≠0,所以a=0.
3.若xi-i2=y+2i,x,y∈R,则复数x+yi=( )
A.-2+i B.2+i
C.1-2i D.1+2i
解析:选B.由i2=-1,得xi-i2=1+xi,则由题意得1+xi=y+2i,根据复数相等的充要条件得x=2,y=1,故x+yi=2+i.
4.复数z=a2-b2+(a+|a|)i(a,b∈R)为实数的充要条件是( )
A.|a|=|b| B.a<0且a=-b
C.a>0且a≠b D.a≤0
解析:选D.复数z为实数的充要条件是a+|a|=0,即|a|=-a,得a≤0,故选D.
5.下列命题:
①若z=a+bi,则仅当a=0且b≠0时,z为纯虚数;
②若z+z=0,则z1=z2=0;
③若实数a与ai对应,则实数集与纯虚数集可建立一一对应关系.
其中正确命题的个数是( )
A.0 B.1
C.2 D.3
解析:选A.在①中未对z=a+bi中a,b的取值加以限制,故①错误;在②中将虚数的平方与实数的平方等同,如若z1=1,z2=i,则z+z=1-1=0,但z1≠z2≠0,故②错误;在③中忽视0·i=0,故③也是错误的.故选A.
6.如果x-1+yi与i-3x为相等复数,x,y为实数,则x=________,y=________.
解析:由复数相等可知所以
答案: 1
7.复数z1=(2m+7)+(m2-2)i,z2=(m2-8)+(4m+3)i,m∈R,若z1=z2,则m=________.
解析:因为m∈R,z1=z2,所以(2m+7)+(m2-2)i=(m2-8)+(4m+3)i.由复数相等的充要条件得
解得m=5.
答案:5
8.设z=log2(1+m)+ilog(3-m)(m∈R)是虚数,则m的取值范围是________.
解析:因为z为虚数,所以log(3-m)≠0,
故解得-1答案:(-1,2)∪(2,3)
9.已知复数z=(m2+5m+6)+(m2-2m-15)i(m∈R).
(1)若复数z是实数,求实数m的值;
(2)若复数z是虚数,求实数m的取值范围;
(3)若复数z是纯虚数,求实数m的值;
(4)若复数z是0,求实数m的值.
解:(1)当m2-2m-15=0时,复数z为实数,
所以m=5或-3.
(2)当m2-2m-15≠0时,复数z为虚数.
所以m≠5且m≠-3.
所以实数m的取值范围为{m|m≠5且m≠-3}.
(3)当时,复数z是纯虚数,所以m=-2.
(4)当时,复数z是0,所以m=-3.
10.已知关于x,y的方程组
有实数解,求实数a,b的值.
解:设(x0,y0)是方程组的实数解,由已知及复数相等的条件,得
由①②得代入③④得
所以实数a,b的值分别为1,2.
[B 能力提升]
11.“复数4-a2+(1-a+a2)i(a∈R)是纯虚数”是“a=-2”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析:选B.因为1-a+a2=+>0,所以若复数4-a2+(1-a+a2)i(a∈R)是纯虚数,则4-a2=0,即a=±2;当a=-2时,4-a2+(1-a+a2)i=7i为纯虚数,故选B.
12.满足方程x2-2x-3+(9y2-6y+1)i=0的实数对(x,y)表示的点的个数为________.
解析:由题意知解得或
所以实数对(x,y)表示的点有,,共有2个.
答案:2
13.已知复数z=m2+3m+1+(m2+5m+6)i<0(m∈R),则m的值为________.
解析:因为z<0,所以z∈R,
所以m2+5m+6=0,
解得m=-2或m=-3.
当m=-3时,z=1>0,不符合题意,舍去;
当m=-2时,z=-1<0,符合题意.
故m的值为-2.
答案:-2
14.已知集合M={(a+3)+(b2-1)i,8},集合N={3i,(a2-1)+(b+2)i},且M∩N?M,M∩N≠?,求整数a,b的值.
解:若M∩N={3i},则(a+3)+(b2-1)i=3i,即a+3=0且b2-1=3,得a=-3,b=±2.
当a=-3,b=-2时,M={3i,8},N={3i,8},M∩N=M,不合题意,舍去;
当a=-3,b=2时,M={3i,8},N={3i,8+4i}.符合题意.
所以a=-3,b=2.
若M∩N={8},则8=(a2-1)+(b+2)i,
即a2-1=8且b+2=0,得a=±3,b=-2.
当a=-3,b=-2时,不合题意,舍去;
当a=3,b=-2时,M={6+3i,8},N={3i,8},符合题意.
所以a=3,b=-2.
若M∩N={(a+3)+(b2-1)i}={(a2-1)+(b+2)i},则即此方程组无整数解.
综上可得a=-3,b=2或a=3,b=-2.
[C 拓展探究]
15.已知复数z1=-a2+2a+ai,z2=2xy+(x-y)i,其中a,x,y∈R,且z1=z2,求3x+y的取值范围.
解:由复数相等的充要条件,得,消去a,得x2+y2-2x+2y=0,即(x-1)2+(y+1)2=2.
法一:令t=3x+y,则y=-3x+t.
分析知圆心(1,-1)到直线3x+y-t=0的距离d=≤,
解得2-2≤t≤2+2,
即3x+y的取值范围是[2-2,2+2].
法二:令
得(α∈R)
所以3x+y=sin α+3cos α+2=2sin(α+φ)+2(其中tan φ=3),于是3x+y的取值范围是[2-2,2+2 ].