2020年苏科新版八年级上册数学《第6章 一次函数》单元测试卷(解析版)

文档属性

名称 2020年苏科新版八年级上册数学《第6章 一次函数》单元测试卷(解析版)
格式 zip
文件大小 363.5KB
资源类型 教案
版本资源 苏科版
科目 数学
更新时间 2020-01-04 15:55:26

图片预览

文档简介

2020年苏科新版八年级上册数学《第6章 一次函数》单元测试卷
一.选择题(共10小题)
1.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是(  )
A.太阳光强弱 B.水的温度 C.所晒时间 D.热水器
2.下列各曲线中,能表示y是x的函数的是(  )
A. B.
C. D.
3.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为(  )
x(kg) 0 1 2 3 4 5 6
y(cm) 12 12.5 13 13.5 14 14.5 15
A.y=x+12 B.y=0.5x+12 C.y=0.5x+10 D.y=x+10.5
4.在函数y=中,自变量x的取值范围是(  )
A.x≥1 B.x≤1且x≠0 C.x≥0且x≠1 D.x≠0且x≠1
5.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于(  )

A.9 B.7 C.﹣9 D.﹣7
6.下列函数关系式:①y=﹣2x,②,③y=﹣2x2,④y=2,⑤y=2x﹣1.其中是一次函数的是(  )
A.①⑤ B.①④⑤ C.②⑤ D.②④⑤
7.若y=x+2﹣b是正比例函数,则b的值是(  )
A.0 B.﹣2 C.2 D.﹣0.5
8.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象大致是图中的(  )
A. B.
C. D.
9.如图中表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数,mn≠0)图象的是(  )
A. B.
C. D.
10.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①关于x的方程kx+b=0的解为x=2;②关于x的方程kx+b=3的解为x=0;③当x>2时,y<0;④当x<0时,y<3.其中正确的是(  )

A.①②③ B.①③④ C.②③④ D.①②④
二.填空题(共8小题)
11.圆周长C与圆的半径r之间的关系为C=2πr,其中变量是   ,常量是   .
12.若一个函数图象的对称轴是y轴,则该函数称为偶函数.那么在下列四个函数:
①y=2x;②y=;③y=x2;④y=(x﹣1)2+2中,属于偶函数的是   (只填序号).
13.一棵新栽的树苗高1米,若平均每年都长高5厘米.请写出树苗的高度y(cm)与时间x(年)之间的函数关系式:   .
14.函数y=中,自变量x的取值范围是   .
15.若关于x的函数y=(n+1)xm﹣1是一次函数,则m=   ,n   .
16.若函数y=(m﹣1)是正比例函数,则m的值为   .
17.如图,已知函数y=﹣2x+4,观察图象回答下列问题
(1)x   时,y>0;(2)x   时,y<0;
(3)x   时,y=0;(4)x   时,y>4.

18.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n的大小关系是   .

三.解答题(共8小题)
19.希望中学学生从2014年12月份开始每周喝营养牛奶,单价为2元/盒,总价y元随营养牛奶盒数x变化.指出其中的常量与变量,自变量与函数,并写出表示函数与自变量关系的式子.
20.已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:
x … 1 2 3 5 7 9 …
y … 1.98 3.95 2.63 1.58 1.13 0.88 …
小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.
下面是小腾的探究过程,请补充完整:
(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(2)根据画出的函数图象,写出:
①x=4对应的函数值y约为   ;
②该函数的一条性质:   .

21.将若干张长为20厘米、宽为10厘米的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为2厘米.
(1)求4张白纸粘合后的总长度;
(2)设x张白纸粘合后的总长度为y厘米,写出y与x之间的关系式;
(3)求当x=20时,y的值.

22.地壳的厚度约为8到40km,在地表以下不太深的地方,温度可按y=3.5x+t计算,其中x是深度,t是地球表面温度,y是所达深度的温度.
(1)在这个变化过程中,自变量和因变量分别是什么?
(2)如果地表温度为2℃,计算当x为5km时地壳的温度.
23.已知y=(m+1)x2﹣|m|+n+4
(1)当m、n取何值时,y是x的一次函数?
(2)当m、n取何值时,y是x的正比例函数?
24.已知函数y=(m+1)x2﹣|m|+n+4.
(1)当m,n为何值时,此函数是一次函数?
(2)当m,n为何值时,此函数是正比例函数?
25.我们知道对于x轴上的任意两点A(x1,0),B(x2,0),有AB=|x1﹣x2|,而对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|称为Pl,P2两点间的直角距离,记作d(P1,P2),即d(P1,P2)=|x1﹣x2|+|y1﹣y2|.
(1)已知O为坐标原点,若点P坐标为(1,3),则d(O,P)=   ;
(2)已知O为坐标原点,动点P(x,y)满足d(O,P)=2,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;
(3)试求点M(2,3)到直线y=x+2的最小直角距离.

26.先完成下列填空,再在同一直角坐标系中画出以下函数的图象(不必再列表)
(1)正比例函数y=2x过( 0,   )和( 1,   )
(2)一次函数y=﹣x+3过( 0,   )和(   ,0 )




2020年苏科新版八年级上册数学《第6章 一次函数》单元测试卷
参考答案与试题解析
一.选择题(共10小题)
1.在利用太阳能热水器来加热水的过程中,热水器里的水温随所晒时间的长短而变化,这个问题中因变量是(  )
A.太阳光强弱 B.水的温度 C.所晒时间 D.热水器
【分析】函数的定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一的值与它对应,那么称y是x的函数,x叫自变量.函数关系式中,某特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量.
【解答】解:根据函数的定义可知,水温是随着所晒时间的长短而变化,可知水温是因变量,所晒时间为自变量.
故选:B.
【点评】本题主要考查常量与变量的知识,解题的关键是对函数的定义以及对自变量和因变量的认识和理解,难度不大.
2.下列各曲线中,能表示y是x的函数的是(  )
A. B.
C. D.
【分析】根据函数的意义即可求出答案.
【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以D正确.
故选:D.
【点评】此题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.函数的意义反映在图象上简单的判断方法是:作垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.
3.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为(  )
x(kg) 0 1 2 3 4 5 6
y(cm) 12 12.5 13 13.5 14 14.5 15
A.y=x+12 B.y=0.5x+12 C.y=0.5x+10 D.y=x+10.5
【分析】由上表可知12.5﹣12=0.5,13﹣12.5=0.5,13.5﹣13=0.5,14﹣13.5=0.5,14.5﹣14=0.5,15﹣14.5=0.5,0.5为常量,12也为常量.故弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式.
【解答】解:由表可知:常量为0.5;
所以,弹簧总长y(cm)与所挂重物x(㎏)之间的函数关系式为y=0.5x+12.
故选:B.
【点评】本题考查了函数关系,关键在于根据图表信息列出等式,然后变形为函数的形式.
4.在函数y=中,自变量x的取值范围是(  )
A.x≥1 B.x≤1且x≠0 C.x≥0且x≠1 D.x≠0且x≠1
【分析】根据分式和二次根式有意义的条件进行计算即可.
【解答】解:由x≥0且x﹣1≠0得出x≥0且x≠1,
x的取值范围是x≥0且x≠1,
故选:C.
【点评】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.
5.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于(  )

A.9 B.7 C.﹣9 D.﹣7
【分析】先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.
【解答】解:∵当x=7时,y=6﹣7=﹣1,
∴当x=4时,y=2×4+b=﹣1,
解得:b=﹣9,
故选:C.
【点评】本题主要考查函数值,解题的关键是掌握函数值的计算方法.
6.下列函数关系式:①y=﹣2x,②,③y=﹣2x2,④y=2,⑤y=2x﹣1.其中是一次函数的是(  )
A.①⑤ B.①④⑤ C.②⑤ D.②④⑤
【分析】根据一次函数的定义条件进行逐一分析即可.
【解答】解:①y=﹣2x是一次函数;
②自变量次数不为1,故不是一次函数;
③y=﹣2x2自变量次数不为1,故不是一次函数;
④y=2是常数;
⑤y=2x﹣1是一次函数.
所以一次函数是①⑤.
故选:A.
【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
7.若y=x+2﹣b是正比例函数,则b的值是(  )
A.0 B.﹣2 C.2 D.﹣0.5
【分析】根据正比例函数的定义可得关于b的方程,解出即可.
【解答】解:由正比例函数的定义可得:2﹣b=0,
解得:b=2.
故选:C.
【点评】考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.
8.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图象大致是图中的(  )
A. B.
C. D.
【分析】根据正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=kx+k的图象过第二、四象限,且与y轴的负半轴相交.
【解答】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,
∴k<0,
∴一次函数y=kx+k的图象过第二、四象限,且与y轴的负半轴相交.
故选:D.
【点评】本题考查了一次函数的图象:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的减小而减小;当b>0,图象与y轴的正半轴相交;当b=0,图象过原点;当b<0,图象与y轴的负半轴相交.
9.如图中表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数,mn≠0)图象的是(  )
A. B.
C. D.
【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn的符号,然后根据m、n同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.
【解答】解:①当mn>0,m,n同号,同正时y=mx+n过1,2,3象限,同负时过2,3,4象限;
②当mn<0时,m,n异号,则y=mx+n过1,3,4象限或1,2,4象限.
故选:C.
【点评】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.
一次函数y=kx+b的图象有四种情况:
①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;
②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;
③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;
④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.
10.如图,已知一次函数y=kx+b的图象与x轴,y轴分别交于点(2,0),点(0,3).有下列结论:①关于x的方程kx+b=0的解为x=2;②关于x的方程kx+b=3的解为x=0;③当x>2时,y<0;④当x<0时,y<3.其中正确的是(  )

A.①②③ B.①③④ C.②③④ D.①②④
【分析】根据一次函数的性质,一次函数与一元一次方程的关系对各小题分析判断即可得解.
【解答】解:由图象得:①关于x的方程kx+b=0的解为x=2,正确;
②关于x的方程kx+b=3的解为x=0,正确;
③当x>2时,y<0,正确;
④当x<0时,y>3,错误;
故选:A.
【点评】本题主要考查了一次函数的性质,一次函数与一元一次方程、一元一次不等式的关系,利用数形结合是求解的关键.
二.填空题(共8小题)
11.圆周长C与圆的半径r之间的关系为C=2πr,其中变量是 C、r ,常量是 2π .
【分析】根据函数的意义可知:变量是改变的量,常量是不变的量,据此即可确定变量与常量.
【解答】解:∵在圆的周长公式C=2πr中,C与r是改变的,π是不变的;
∴变量是C,r,常量是2π.
故答案为:C,r;2π.
【点评】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
12.若一个函数图象的对称轴是y轴,则该函数称为偶函数.那么在下列四个函数:
①y=2x;②y=;③y=x2;④y=(x﹣1)2+2中,属于偶函数的是 ③ (只填序号).
【分析】根据对称轴是y轴,排除①②选项,再根据④不是偶函数,即可确定答案.
【解答】解:①y=2x,是正比例函数,函数图象的对称轴不是y轴,错误;
②y=是反比例函数,函数图象的对称轴不是y轴,错误;
③y=x2是抛物线,对称轴是y轴,是偶函数,正确;
④y=(x﹣1)2+2对称轴是x=1,错误.
故属于偶函数的是③.
【点评】本题主要考查正比例函数、反比例函数、二次函数的对称性和二次函数是偶函数的性质.
13.一棵新栽的树苗高1米,若平均每年都长高5厘米.请写出树苗的高度y(cm)与时间x(年)之间的函数关系式: y=5x+100 .
【分析】根据x年后这棵树的高度=现在高+每年长的高×年数,即可解答.
【解答】解:根据题意,得:y=5x+100,
故答案为:y=5x+100.
【点评】考查列一次函数关系式,掌握等量关系是解决本题的关键.
14.函数y=中,自变量x的取值范围是 x≥2 .
【分析】根据被开方数大于等于0,分母不等于0列式进行计算即可得解.
【解答】解:根据题意得,x﹣2≥0且x≠0,
解得x≥2且x≠0,
所以,自变量x的取值范围是x≥2.
故答案为:x≥2.
【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.
15.若关于x的函数y=(n+1)xm﹣1是一次函数,则m= 2 ,n ≠﹣1 .
【分析】一次函数的系数n+1≠0,自变量x的次数m﹣1=1,据此解答m、n的值.
【解答】解:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,
∴根据题意,知

解得,,
故答案是2、≠﹣1.
【点评】本题主要考查了一次函数的定义:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.
16.若函数y=(m﹣1)是正比例函数,则m的值为 ﹣1 .
【分析】根据正比例函数的定义,得m2=1,且m﹣1≠0.
【解答】解:∵函数y=(m﹣1)是正比例函数,
∴m2=1,且m﹣1≠0,
解得,m=﹣1.
故答案是:﹣1.
【点评】本题主要考查了正比例函数的定义,及一般形式,是一个常见的题目类型.
17.如图,已知函数y=﹣2x+4,观察图象回答下列问题
(1)x <2 时,y>0;(2)x >2 时,y<0;
(3)x =2 时,y=0;(4)x <0 时,y>4.

【分析】根据图中函数图象所过象限以及与x轴、y轴的交点,可直观得到所需结论.
【解答】解:(1)当x<2时,y>0;
(2)当x>2时,y<0;
(3)当x=2时,y=0;
(4)当x<0时,y>4.
故答案为<2,>2,=2,<0.
【点评】此题考查了一次函数的图象与不等式的关系,利用数形结合是解答此题的基本思想.
18.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则比例系数k,m,n的大小关系是 k>m>n .

【分析】根据函数图象所在象限可判断出k>0,m>0,n<0,再根据直线上升的快慢可得k>m,进而得到答案.
【解答】解:∵正比例函数y=kx,y=mx的图象在一、三象限,
∴k>0,m>0,
∵y=kx的图象比y=mx的图象上升得快,
∴k>m>0,
∵y=nx的图象在二、四象限,
∴n<0,
∴k>m>n,
故答案为:k>m>n.
【点评】此题主要考查了正比例函数图象,关键是掌握正比例函数图象的性质:
它是经过原点的一条直线,
当k>0时,图象经过一、三象限,y随x的增大而增大;
当k<0时,图象经过二、四象限,y随x的增大而减小.
三.解答题(共8小题)
19.希望中学学生从2014年12月份开始每周喝营养牛奶,单价为2元/盒,总价y元随营养牛奶盒数x变化.指出其中的常量与变量,自变量与函数,并写出表示函数与自变量关系的式子.
【分析】根据总价=单价×数量,可得函数关系式.
【解答】解:由题意得:
y=2x,
常量是2,变量是x、y,
x是自变量,y是x的函数.
【点评】主要考查了常量与变量.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.
20.已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:
x … 1 2 3 5 7 9 …
y … 1.98 3.95 2.63 1.58 1.13 0.88 …
小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.
下面是小腾的探究过程,请补充完整:
(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(2)根据画出的函数图象,写出:
①x=4对应的函数值y约为 2 ;
②该函数的一条性质: 该函数有最大值 .

【分析】(1)按照自变量由小到大,利用平滑的曲线连结各点即可;
(2)①在所画的函数图象上找出自变量为4所对应的函数值即可;
②利用函数图象有最高点求解.
【解答】解:(1)如图,

(2)①x=4对应的函数值y约为2.0;
②该函数有最大值.
故答案为2,该函数有最大值.
【点评】本题考查了函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.
21.将若干张长为20厘米、宽为10厘米的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为2厘米.
(1)求4张白纸粘合后的总长度;
(2)设x张白纸粘合后的总长度为y厘米,写出y与x之间的关系式;
(3)求当x=20时,y的值.

【分析】(1)根据白纸粘合后的总长度=4张白纸的长﹣(4﹣1)个粘合部分的宽即可;
(2)根据白纸粘合后的总长度=x张白纸的长﹣(x﹣1)个粘合部分的宽,列出函数解析式即可;
(3)根据长方形的面积计算公式,把相关数值代入即可求解.
【解答】解:(1)4张白纸粘合后的总长度=4×20﹣2×3=80﹣6=74(厘米);

(2)由题意得:y=20x﹣(x﹣1)×2=18x+2;

(3)当x=20时,y=18x+2=362.
【点评】此题考查一次函数的运用,注意观察图意,找出规律解决问题.
22.地壳的厚度约为8到40km,在地表以下不太深的地方,温度可按y=3.5x+t计算,其中x是深度,t是地球表面温度,y是所达深度的温度.
(1)在这个变化过程中,自变量和因变量分别是什么?
(2)如果地表温度为2℃,计算当x为5km时地壳的温度.
【分析】(1)因为温度可按y=3.5x+t计算,其中x是深度,t是地球表面温度,y是所达深度的温度,所以自变量是x,因变量是y.
(2)令t=2,x=5,代入函数解析式,即可求解.
【解答】(1)解:自变量是地表以下的深度x,
因变量是所达深度的温度y;

(2)解:当t=2,x=5时,
y=3.5×5+2=19.5;
所以此时地壳的温度是19.5℃.
【点评】本题只需利用函数的概念即可解决问题.
23.已知y=(m+1)x2﹣|m|+n+4
(1)当m、n取何值时,y是x的一次函数?
(2)当m、n取何值时,y是x的正比例函数?
【分析】(1)根据一次函数的定义:一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,据此求解即可;
(2)根据正比例函数的定义:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数,据此求解即可.
【解答】解:(1)根据一次函数的定义,得:2﹣|m|=1,
解得m=±1.
又∵m+1≠0即m≠﹣1,
∴当m=1,n为任意实数时,这个函数是一次函数;

(2)根据正比例函数的定义,得:2﹣|m|=1,n+4=0,
解得m=±1,n=﹣4,
又∵m+1≠0即m≠﹣1,
∴当m=1,n=﹣4时,这个函数是正比例函数.
【点评】本题主要考查了一次函数与正比例函数的定义,比较简单.一次函数解析式y=kx+b的结构特征:k≠0;自变量的次数为1;常数项b可以为任意实数.正比例函数y=kx的解析式中,比例系数k是常数,k≠0,自变量的次数为1.
24.已知函数y=(m+1)x2﹣|m|+n+4.
(1)当m,n为何值时,此函数是一次函数?
(2)当m,n为何值时,此函数是正比例函数?
【分析】(1)直接利用一次函数的定义分析得出答案;
(2)直接利用正比例函数的定义分析得出答案
【解答】解:(1)根据一次函数的定义,得:
2﹣|m|=1,
解得:m=±1.
又∵m+1≠0即m≠﹣1,
∴当m=1,n为任意实数时,这个函数是一次函数;

(2)根据正比例函数的定义,得:
2﹣|m|=1,n+4=0,
解得:m=±1,n=﹣4,
又∵m+1≠0即m≠﹣1,
∴当m=1,n=﹣4时,这个函数是正比例函数.
【点评】此题主要考查了一次函数以及正比例函数的定义,正确把握次数与系数的关系是解题关键.
25.我们知道对于x轴上的任意两点A(x1,0),B(x2,0),有AB=|x1﹣x2|,而对于平面直角坐标系中的任意两点P1(x1,y1),P2(x2,y2),我们把|x1﹣x2|+|y1﹣y2|称为Pl,P2两点间的直角距离,记作d(P1,P2),即d(P1,P2)=|x1﹣x2|+|y1﹣y2|.
(1)已知O为坐标原点,若点P坐标为(1,3),则d(O,P)= 4 ;
(2)已知O为坐标原点,动点P(x,y)满足d(O,P)=2,请写出x与y之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形;
(3)试求点M(2,3)到直线y=x+2的最小直角距离.

【分析】(1)由P0与原点O的坐标,利用题中的新定义计算即可得到结果;
(2)利用题中的新定义列出x与y的关系式,画出相应的图象即可;
(3)根据新的运算规则知d(M,Q)=|x﹣2|+|y﹣3|=|x﹣2|+|x+2﹣3|=|x﹣2|+|x﹣1|,然后由绝对值与数轴的关系可知,|x﹣2|+|x﹣1|表示数轴上实数x所对应的点到数2和1所对应的点的距离之和,其最小值为1.
【解答】解:(1)d(O,P)=|0﹣1|+|0﹣3|=4;
故答案为:4;

(2)∵O为坐标原点,动点P(x,y)满足d(O,P),
∴|0﹣x|+|0﹣y|=|x|+|y|=2,
所有符合条件的点P组成的图形如图所示;

(3)∵d=|x﹣2|+|y﹣3|=|x﹣2|+|x+2﹣3|
=|x﹣2|+|x﹣1|
∴x可取一切实数,|x﹣2|+|x﹣1|表示数轴上实数x所对应的点到1和2所对应的点的距离之和,其最小值为1.
∴点M(2,3)到直线y=x+2的直角距离为1.

【点评】此题主要考查了一次函数图象,涉及的知识有:绝对值的代数意义,弄清题中的新定义是解本题的关键.
26.先完成下列填空,再在同一直角坐标系中画出以下函数的图象(不必再列表)
(1)正比例函数y=2x过( 0, 0 )和( 1, 2 )
(2)一次函数y=﹣x+3过( 0, 3 )和( 3 ,0 )

【分析】(1)分别将x=0和x=1代入y=2x中求出与之对应的y值,再描点连线即可画出正比例函数y=2x的图象;
(2)分别将x=0、y=0代入y=﹣x+3中求出与之对应的y、x的值,再描点连线即可画出一次函数y=﹣x+3的图象.
【解答】解:(1)当x=0时,y=2x=0,
∴正比例函数y=2x过(0,0);
当x=1时,y=2x=1,
∴正比例函数y=2x过(1,2).
故答案为:0;2.
(2)当x=0时,y=﹣x+3=3,
∴一次函数y=﹣x+3过(0,3);
当y=0时,有﹣x+3=0,
解得:x=3,
∴一次函数y=﹣x+3过(3,0).
故答案为:3;3.

【点评】本题考查了正比例函数的图象、一次函数的图象以及一次函数图象上点的坐标特征,解题的关键是:(1)分别将x=0和x=1代入y=2x中求出与之对应的y值;(2)分别将x=0、y=0代入y=﹣x+3中求出与之对应的y、x的值.