高中数学 必修四第1章 三角函数(教案+练习共10份,Word版)

文档属性

名称 高中数学 必修四第1章 三角函数(教案+练习共10份,Word版)
格式 zip
文件大小 810.0KB
资源类型 教案
版本资源 苏教版
科目 数学
更新时间 2020-01-07 13:18:39

内容文字预览

第八课时 同角三角函数关系的应用
教学目标:
熟练运用同角三角函数化简三角函数式,活用同角三角函数关系证明三角恒等式,明确化简结果的要求,掌握证明恒等的方法;通过化简与证明,使学生提高三角恒等变形的能力,树立化归的思想方法.
教学重点:
三角函数式的化简,三角恒等式的证明.
教学难点:
同角三角函数关系的变用、活用.
教学过程:
[例1]化简
法一:原式=
==
法二:原式=


===
法三:原式=

===
①以上三种解法虽思路不同,但都应用了公式sin2α+cos2α=1,其中生2、3是顺用公式,1是逆用公式,显然1的解法简单明了.②在1的解法中逆用公式sin2α+cos2α=1,实质是“1”的一种三角代换“1=sin2α+cos2α”.
对于利用同角三角函数关系式化简时,其结果一般要求:①函数种类少;②式子项数少;③项的次数低;④尽量使分母或根号内不含三角函数式;⑤尽可能求出数值(不能查表)).
[例2]求证=
证法一:由cosx≠0知1+sinx≠0,于是
左=====右
证法二:由1-sinx≠0,cosx≠0于是
右=====左
证法三:左-右=-=
===0
∴=
证法四:(分析法) 欲证=
只须证cos2x=(1+sinx)(1-sinx)
只须证cos2x=1-sin2x 只须证sin2x+cos2x=1
∵上式成立是显然的,∴=成立
分析法证题的思路是“执果索因”:从结论出发,逐步逆推,推出一个真命题或者推出的
与已知一致,从而肯定原式成立.要注意论证格式
Ⅲ.课堂练习
已知sinθ+cosθ=,θ∈(0,π),求tanθ的值.
分析:依据已知条件sinθ+cosθ=,θ∈(0,π),求得2sinθcosθ的值,进而求得sinθ-cosθ的值,结合sinθ、cosθ的值再求得tanθ即可.
解:∵sinθ+cosθ=,(1)
将其平方得,1+2sinθcosθ= ∴2sinθcosθ=-,
∵θ∈(0,π) ∴cosθ<0<sinθ
∵(sinθ-cosθ)2=1-2sinθcosθ= ∴sinθ-cosθ= (2)
由(1)(2)得
sinθ=,cosθ=-, ∴tanθ=-
Ⅳ.课时小结
本节课我们讨论了同角三角函数关系式的两个方面的应用:化简与证明,与同学们讨论了化简的一般要求,证明恒等的常用方法,对于化简与证明另外还应注意两种技巧:一种是切化弦”,一种是“1”的代换,“1”的代换不要仅限于平方关系的代换,还要注意倒数关系的代换,究竟用哪一种,要由具体问题来决定.
Ⅴ.课后作业
课本P24习题 10、11、12.
同角三角函数关系的应用
1.式子sin4θ+cos2θ+sin2θcos2θ的结果是 ( )
A. B. C. D.1
2.已知tanθ= (其中0<a<1,θ是三角形的一个内角),则cosθ的值是 ( )
A. B. C. D.±
3.若sinα=,cosα=,<α<π,则a的值满足 ( )
A.a=0 B.a>3或a<-5 C.a=8 D.a=0或a=8
4.化简的结果为 ( )
A.cos4 B.-cos4 C.±cos4 D.cos22
5.已知sinα=,且α为第二象限角,那么tanα=
6.已知sinαcosα=,且<α<,则cosα-sinα的值为
7.若tanα=,π<α<π,则sinα·cosα=
8.若β∈[0,2π),且+=sinβ-cosβ,求β的取值范围.





9.化简:-.






10.求证:tan2θ-sin2θ=tan2θ·sin2θ.




同角三角函数关系的应用答案
1.D 2.C 3.C 4.B 5.- 6.- 7.
8.若β∈[0,2π),且+=sinβ-cosβ,求β的取值范围.
分析:依据已知条件得cosβ≤0,sinβ≥0,利用同角三角函数之间的关系式求解.
解:∵+
=+=|sinβ|+|cosβ|=sinβ-cosβ
∴sinβ≥0,cosβ≤0
∴β是第二象限角或终边在x轴负半轴和y轴正半轴上的角
∵0≤β≤2π ∴≤β≤π
9.化简:-.
原式=-
==sinx+cosx
10.求证:tan2θ-sin2θ=tan2θ·sin2θ.
左边=tan2θ-sin2θ=-sin2θ
=sin2θ·=sin2θ·=sin2θ·tan2θ=右边





- 4 -


第二课时 角的概念的推广(二)
教学目标:
熟练掌握象限角的集合、轴线角的集合及终边相同的角的表示方法.
教学重点:
轴线角的集合,终边相同的角的表示方法
教学难点:
终边相同的角的表示方法
教学过程:
Ⅰ.复习回顾
请思考并回答以下问题:
1.正角、负角、零角、象限角、终边相同的角的表示方法是如何定义的?
2.角的定义只强调了射线绕端点旋转的方向,而没有谈及射线绕端点旋转的圈数,那么射线绕端点旋转的圈数对角有无影响?
3.能否说射线绕端点旋转的圈数越多,角就越大呢?
4.如图所示的∠ABC是第一象限角吗?为什么?
指出:①在角的定义里,射线绕端点旋转的圈数影响着角的
大小.②射线绕端点旋转的方向,若是逆时针方向旋转,则旋转圈
数越多,角越大;若顺时针方向旋转,则旋转圈数越多,角越小.③象限角概念中强调“角的顶点与原点重合,角的始边与x轴的非负半轴重合”这一条件.
Ⅱ.例题分析
[例1]写出终边在y轴上的角的集合(用0°到360°的角表示)
第一步:在0°到360°内找到满足上述条件的角,即90°、270°.
第二步:写出与上述角终边相同的角的集合,即
S1={β|β=90°+k·360°,k∈Z}
S2={β|β=270°+k·360°,k∈Z}
第三步:写出几个集合的并集,即
S=S1∪S2={β|β=90°+k·360°,k∈Z}∪{β|β=270°+k·360°,k∈Z}
={β|β=90°+2k·180°,k∈Z}∪{β|β=90°+(2k+1)· 180°,k∈Z}
={β|β=90°+180°的偶数倍}∪{β|β=90°+180°的奇数倍}
={β|β=90°+180°的整数倍}={β|β=90°+n·180°,n∈Z}
能写出终边在x轴的非负半轴、非正半轴上的角的集合吗?
终边在x轴非负半轴上的角的集合为{x|x=k·360°,k∈Z},终边在x轴非正半轴上的角的集合为{x|x=k·360°+180°,k∈Z}.
以上两个集合的并集代表什么特殊位置上的角的集合呢?
[例2]写出与下列各角终边相同的角的集合S,并把S中适合不等式-360°≤β≤
720°的元素β写出来:
(1)60° (2)-21° (3)363°14′
第一步:利用终边相同的角的集合公式写出:
(1)S={β|β=60°+k·360°,k∈Z}
(2)S={β|β=-21°+k·360°,k∈Z}
(3)S={β|β=363°14′+k·360°,k∈Z}
第二步:在第一步的基础上,利用满足约束条件的不等式,对其中的k值,分别采用赋值法求解出元素β:
(1)-300°,60°,420°
(2)-21°,339°,699°
(3)-356°46′,3°14′,363°14′
题目中的k值是靠观测、试探确定的,即赋给k一个任意值m试一试,看是否满足条件,再将m增1或减1再试,直至找到合适的k的最小值(或最大值).
[例3]若α是第三象限角,试求、的范围.
分析:依据象限角的表示法将α表示出来后,再确定、的范围,再进一步判断、所在的象限.
解:∵α是第三象限角
∴k·360°+180°<α<k·360°+270°(k∈Z)
(1)k·180°+90°<<k·180°+135°(k∈Z)
当k=2n(n∈Z)时,n·360°+90°<<n·360°+135°
当k=2n+1(n∈Z)时,n·360°+270°<<n·360°+315°
∴为第二或第四象限角.
(2)k·120°+60°<<k·120°+90°(k∈Z)
当k=3n(n∈Z)时,n·360°+60°<<n·360°+90°(n∈Z)
当k=3n+1(n∈Z)时,n·360°+180°<<n·360°+210°(n∈Z)
当k=3n+2(n∈Z)时,n·360°+300°<<n·360°+330°(n∈Z)
∴为第一或第三或第四象限角.
Ⅲ.课堂练习
P7练习5
Ⅳ.课时小结
本节课的重点内容仍然是终边相同的角的集合表示,这是学习后续知识的基础,要予以足够的重视,若还有不明白的地方,请同学们再做进一步的讨论,或者提出来,老师再与你一块研究.
Ⅴ.课后作业
(一)P10习题 4、11、12.
(二)1.预习内容
课本P7~P8弧度制
2.预习提纲
弄清楚下列问题:
(1)弧度的单位符号
(2)1弧度的角的定义
(3)弧度制的定义
(4)角度与弧度的换算公式






























角的概念的推广(二)
1.若α是第四象限角,则180°-α是 ( )
A.第一象限角 B.第二象限角
C.第三象限角 D.第四象限角
2.设k∈Z,下列终边相同的角是 ( )
A.(2k+1)·180°与(4k±1)·180° B.k·90°与k·180°+90°
C.k·180°+30°与k·360°±30° D.k·180°+60°与k·60°
3.若90°<-α<180°,则180°-α与α的终边 ( )
A.关于x轴对称 B.关于y轴对称
C.关于原点对称 D.以上都不对
4.终边与坐标轴重合的角α的集合是 ( )
A.{α|α=k·360°,k∈Z} B.{α|α=k·180°+90°,k∈Z}
C.{α|α=k·180°,k∈Z} D.{α|α=k·90°,k∈Z}
5.若角α与β终边重合,则有 ( )
A.α-β=180° B.α+β=0
C.α-β=k·360°(k∈Z) D.α+β=k·360°(k∈Z)
6.若将时钟拨慢5分钟,则时针转了 度,分针转了 度.
7.若角α是第三象限角,则角的终边在 ,2α角的终边在 .
8.如果6α与30°角的终边相同,求适应不等式-180°<α<180°的角α的集合.






9.如果角α的终边经过点M(1,),试写出角α的集合A,并求集合A中最大的负角和绝对值最小的角.






10.已知0°<θ<360°,且θ角的7倍角的终边和θ角终边重合,求θ.



角的概念的推广(二)答案
1.C 2.A 3.B 4.D 5.C 6.2.5 30
7.第二或第四象限 第一或第二象限或终边在y轴的正半轴上
8.如果6α与30°角的终边相同,求适应不等式-180°<α<180°的角α的集合.
分析:由6α与30°角的终边相同,得出α的表达式是解题的关键.
解:由题意得
6α=30°+k·360°(k∈Z)
∴α=5°+k·60°
∵-180°<α<180°
∴-180°<5°+k·60°<180°,-185°<k·60°<175°
∴-<k<
∵k是整数, ∴k=-3,-2,-1,0,1,2.
分别代入α=5°+k·60°,得满足条件的α的集合为:
{-175°,-115°,-55°,5°,65°,125°}
9.如果角α的终边经过点M(1,),试写出角α的集合A,并求集合A中最大的负角和绝对值最小的角.
分析:关键是求出0°到360°范围内的角α.
解:在0°到360°范围内,由几何方法可求得α=60°.
∴A={α|α=60°+k·360°,k∈Z}
其中最大的负角为-300°(当k=-1时)
绝对值最小的角为60°(当k=0时)
10.已知0°<θ<360°,且θ角的7倍角的终边和θ角终边重合,求θ.
由7θ=θ+k·360°,得θ=k·60°(k∈Z)
∴θ=60°,120°,180°,240°,300°






- 4 -


第九课时 诱导公式(一)
教学目标:
理解诱导公式的推导方法,掌握诱导公式并运用之进行三角函数式的求值、化简以及简单三角恒等式的证明,培养学生化归、转化的能力;通过诱导公式的应用,使学生认识到转化“矛盾”是解决问题的一条行之有效的途径.
教学重点:
理解并掌握诱导公式.
教学难点:
诱导公式的应用——求三角函数值,化简三角函数式,证明简单的三角恒等式.
教学过程:
学习三角函数定义时,我们强调P是任意角α终边上非顶点的任意一点,至于α是多大的角,多小的角并不知道,那么由三角函数的定义可知:终边相同的角的同一三角函数值相等,由此得到公式一:
sin(k·360°+α)=sinα
cos(k·360°+α)=cosα
tan(k·360°+α)=tanα,(k∈Z)
公式的作用:把求任意角的三角函数值转化为求0°到360°角的三角函数值.下面我们来看几个例子.
[例1]求下列三角函数的值.
(1)sin1480°10′ (2)cos (3)tan(-)
解:(1)sin1480°10′=sin(40°10′+4×360°)=sin40°10′=0.6451
(2)cos=cos(+2π)=cos=
(3)tan(-)=tan(-2π)=tan=.
[例2]化简
利用同角三角函数关系公式脱掉根号是解决此题的关键,即
原式=
===cos80°
利用这组公式可以将求任意角的三角函数值转化为求0°到360°角的三角函数值.
初中我们学习了锐角三角函数,任意一个锐角的三角函数值我们都能求得,但90°到3600角的三角函数值,我们还是不会求,要想求出其值,我们还得继续去寻求办法:看能不能把它转化成锐角三角函数,我们来研究这个问题.
下面我们再来研究任意角α与-α的三角函数之间的关系,任意角α的终边与单位圆相交于点P(x,y),角-α的终边与单位圆相交于点P′,因为这两个角的终边关于x轴对称,所以点P′的坐标是(x,-y),由正弦函数、余弦函数的定义可得.
sinα=y cosα=x
sin(-α)=-y cos(-α)=x
所以sin(-α)=-sinα cos(-α)=cosα
则tan(-α)==-tanα
于是得到一组公式(公式二):
sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα
下面由学生推导公式三:
sin(180°-α)=sinα
cos(180°-α)=-cosα
tan(180°-α)=-tanα
已知任意角α的终边与单位圆相交于点P(x,y),由于角180°+α的终边就是角α的反向延长线,所以角180°+α的终边与单位圆的交点P′与点P关于原点O对称,由此可知,点P′的坐标是(-x,-y),由正弦函数、余弦函数的定义可得:
sinα=y,cosα=x,sin(180°+α)=-y,cos(180°+α)=-x
∴sin(180°+α)=-sinα
cos(180°+α)=-cosα tan(180°+α)=tanα
于是我们得到一组公式(公式四):
sin(180°+α)=-sinα
cos(180°+α)=-cosα
tan(180°+α)=tanα
分析这几组公式,它有如下的特点:
1.-α、180°-α、180°+α的三角函数都化成了α的同名三角函数.
2.前面的“+”“-”号是把看作锐角时原函数的符号.即把α看作锐角时,180°+α是第三象限角,第三象限角的正弦是负值,等号右边放“-”号,第三象限角的余弦是负值,等号右边放“-”号;把α看作锐角时,-α是第四象限角,第四象限角的正弦是负值,等号右边放“-”号,第四象限角的余弦是正值,等号右边放“+”号.
这也就是说,-α、180°-α、180°+α的三角函数都等于α的同名三角函数且前面放上把α看作锐角时原函数的符号,可以简记为:
函数名不变,正负看象限
下面我们来看几个例子.
[例3]求下列三角函数值
(1)cos225° (2)sinπ
解:(1)cos225°=cos(180°+45°)=-cos45°=-;
(2)sinπ=sin(π+)=-sin=-sin18°=-0.3090.(sin18°的值系查表所得)
[例4]求下列三角函数值
(1)sin(-) (2)cos(-240°12′)
解:(1)sin(-)=-sin=-;
(2)cos(-240°12′)=cos240°12′=cos(180°+60°12′)
=-cos60°12′=-0.4970
[例5]化简
解:原式===1
课堂练习:
课本P21练习1、2、3.
课时小结:
本节课我们学习了公式一~四,这几组公式在求三角函数值、化简三角函数式及证明三角恒等式时是经常用到的,为了记牢公式,我们总结出了“函数名不变,正负看象限”的简便记法,同学们要正确理解这句话的含义,不过更重要的还是应用,我们要多练习,以便掌握得更好,运用得更自如.
课后作业:
课本P24练习13、16、17.





















诱导公式(一)
1.sin(-π)的值等于 ( )
A. B.- C. D.-
2.若cos165°=a,则tan195°等于 ( )
A. - B. - eq \f(,a) C. eq \f(,a) D. eq \f(-,a)
3.已知cos(π+θ)=-,则tan(θ-9π)的值 ( )
A.± B. C.± D.-
4.已知sin(π-α)=log8,且α∈(-,0),则tanα的值是 ( )
A. B.- C.± D. -
5.下列不等式中,不成立的是 ( )
A.sin130°>sin140° B.cos130°>cos140°
C.tan130°>tan140° D.cot130°>cot140°
6.求:的值.
















7.求下列各三角函数值.
(1)sin(-π) (2)sin(-1200°)
(3)tan(-π) (4)tan(-855°)
(5)cosπ (6)cos(-945°)




















8.已知π<θ<2π,cos(θ-9π)=-,求tan(10π-θ)的值.










诱导公式(一)答案
1.C 2.D 3.C 4.B 5.C 6.-
7.求下列各三角函数值.
(1)sin(-π) (2)sin(-1200°)
(3)tan(-π) (4)tan(-855°)
(5)cosπ (6)cos(-945°)
分析:求三角函数值的步骤为:①利用诱导公式三将负角的三角函数变为正角的三角函数.②利用诱导公式一化为0°到360°间的角的三角函数. ③进一步转化成锐角三角函数.
解:(1)sin(-π)=-sinπ
=-sin(4π+π)=-sinπ=-sin(π+)=sin=
(2)sin(-1200°)=-sin1200°
=-sin(3·360°+120°)=-sin120°=-sin(180°-60°)=-sin60°=-
(3)tan(-π)=-tanπ
=-tan(22π+π-)=-tan(π-)=tan=
(4)tan(-855°)=-tan855°
=-tan(2·360°+135°)=-tan135°=-tan(180°-45°)=tan45°=1
(5)cosπ=cos(4π+)
=cos=cos(π-)=-.
(6)cos(-945°)=cos945°=cos(2·360°+225°)
=cos225°=cos(180°+45°)=-cos45°=-.
8.已知π<θ<2π,cos(θ-9π)=-,求tan(10π-θ)的值.
分析:依据已知条件求出cosθ,进而求得tan(10π-θ)的值.
解:由已知条件得
cos(θ-π)=-,cos(π-θ)=-,
∴cosθ= ∵π<θ<2π,
∴<θ<2π ∴ tanθ=-
∴tan(10π-θ)=tan(-θ)=-tanθ=







- 4 -


第六课时 任意角的三角函数(二)
教学目标:
理解并掌握终边相同的角的同一三角函数值相等,使学生认识到规律是客观存在的,只要用心去找,认真寻求,就不难发现,不难认识.客观世界中的事物也是这样,要善于发现规律,认识规律,掌握规律,利用规律,按照事物的发展规律去办事.
教学重点:
各种三角函数在各象限内的符号,终边相同的角的同一三角函数值相等.
教学难点:
各种三角函数在各象限内的符号.
教学过程:
Ⅰ.复习回顾
任意角三角函数的定义
Ⅱ.讲授新课
三角函数的定义告诉我们,各三角函数值实质上是个比值,因此,各三角函数在各象限内的符号,取决于x、y的符号(因为r恒大于零).因为P点在第一、第二象限时,纵坐标y>0,P点在第三、第四象限时,纵坐标y<0,所以正弦函数值对于第一、第二象限角是正的,对于第三、第四象限角是负的.请同学们仿照我们讨论正弦函数值在各象限内符号的方法,回答余弦函数值在各象限内的符号.
余弦函数值的正负取决于P点横坐标x的正负,因为P点在第一、第四象限时,横坐标x>0,P点在第二、第三象限时,横坐标x<0,所以余弦函数值对于第一、第四象限角是正的,对于第二、第三象限角是负的.
对于正切函数值,其正负怎样确定呢?
正切函数值 的正负,取决于x、y的符号是否相同.因为P点在第一象限时,x、y同正,P点在第三象限时,x、y同负,此时 >0,P点在第二、第四象限时,x、y异号,此时 <0,所以正切函数值对于第一、第三象限角是正的,对于第二、第四象限角是负的.
Ⅲ.例题分析
[例1]确定下列三角函数值的符号
(1)cos250° (2)sin(-) (3)tan(-672°) (4)tan
解:(1)∵250°是第三象限角,∴cos250°<0
(2)∵-是第四象限角,∴sin(-)<0
(3)tan(-672°)=tan(48°-2×360°)=tan48°
而48°是第一象限角,∴tan(-672°)>0
(4)tan=tan(+2π)=tan
而是第四象限角,∴tan<0.
[例2]如果点P(2a,-3a)(a<0)在角θ的终边上,求sinθ、cosθ、tanθ的值.
分析:依据点P(2a,-3a)(a<0)坐标,可以在一直角三角形中利用任意角的三角函数定义求.
解:如图,点P(2a,-3a)(a<0)在第二象限,
且r=-a,
∴sinθ= ==
cosθ===-
tanθ==-
[例3]已知角θ的终边在直线y=-3x上,求10sinθ+的值.
分析:依据θ的终边在直线y=-3x上,可设出其终边上任一点P(m,-3m),再对
m>0与m<0分别讨论.
解:设P(m,-3m)是θ终边上任一点,则
r===|m|
当m>0时,r=m.
∴sinθ==-,==
∴10sinθ+=-3+3=0
当m<0时,r=-m
∴sinθ==
==-
∴10sinθ+=3-3=0
综上,得10sinθ+=0
Ⅳ.课堂练习
课本P16练习 4、5、6、7、8.
Ⅴ.课时小结
本节课我们重点讨论了三角函数在各象限内的符号,这是我们日后学习的基础,经常要用,请同学们熟记.
Ⅵ.课后作业
课本P23习题 4、5、6.


任意角的三角函数(二)
1.已知角θ的终边过点P(-4a,3a)a≠0,则2sinθ+cosθ的值是 ( )
A. B.- C. 或- D.不确定
2.设A是第三象限角,且|sin|=-sin,则是 ( )
A.第一象限角 B.第二象限角
C.第三象限角 D.第四象限角
3.sin2cos3tan4的值 ( )
A.大于0 B.小于0 C.等于0 D.不确定
4.已知|cosθ|=cosθ,|tanθ|=-tanθ,则 的终边在 ( )
A.第二、四象限 B.第一、三象限
C.第一、三象限或x轴上 D.第二、四象限或x轴上
5.若sinθ·cosθ>0,则θ是第 象限的角.
6.若α的余弦线为0,则它的正弦线的长度为 .
7.角α(0<α<2π)的正弦线与余弦线的长度相等且符号相同,则α的值为 .
8.已知α是第三象限角,试判定sin(cosα)·cos(sinα)的符号.





9.已知:P(-2,y)是角α终边上一点,且sinα=-,求cosα的值.







10.已知角α的终边经过P(8m,6m)(m≠0),求log2|-tanα|的值.




任意角的三角函数(二)答案
1.C 2.D 3.B 4.D 5.一、三 6.1 7.或
8.已知α是第三象限角,试判定sin(cosα)·cos(sinα)的符号.
分析:依据α是第三象限角可得cosα<0且-1<cosα<0,与sinα<0
且-1<sinα<0,进而确定式子sin(cosα)·cos(sinα)的符号.
解:∵α是第三象限角
∴-1<cosα<0,-1<sinα<0,
∴sin(cosα)<0,cos(sinα)>0.
∴sin(cosα)·cos(sinα)<0
9.已知:P(-2,y)是角α终边上一点,且sinα=-,求cosα的值.
由P(-2,y)且sinα=-<0知y<0
又=-,y2+4=5y2,y2=1
∴y=-1
∴cosα===-
10.已知角α的终边经过P(8m,6m)(m≠0),求log2|-tanα|的值.
分析:依据点P(8m,6m)(m≠0)的坐标,求出及tanα的值,进而求出
log2|-tanα|的值.
解:∵P(8m,6m)(m≠0),∴r=10|m|
当m>0时,r=10m
∴=,tanα=, ∴log2|-tanα|=log2=-1
当m<0时,r=-10m
∴=-,tanα=, ∴log2|-tanα|=log22=1
综上,得log2|-tanα|=




- 4 -


第七课时 同角三角函数的基本关系式
教学目标:
理解并掌握同角三角函数的基本关系,并能应用之解决一类三角函数的求值问题,通过同角三角函数关系的应用,使学生面对问题养成分析的习惯、学会分析的方法.
教学重点:
同角三角函数的基本关系.
教学难点:
已知某角的一个三角函数值,求它其余的各三角函数值时,符号的确定.
教学过程:
Ⅰ.自学指导
今天我们来学习同角三角函数的基本关系式,课下同学们已经对这部分内容进行了预习,这些关系式的具体内容是_________.
sin2α+cos2α=1,=tanα
请同学们再仔细看一下课本,看这些关系式是怎样得到的?它们的成立有条件吗?若有,是什么?
这些关系式都是由任意角的三角函数定义得到的,它们的成立有条件:一是必须为同角,二是关系式对式子两边都有意义的角=tanα成立.
通过分析,我们必须明确注意:
(1)关系式是对于同角而言的.
(2)关系式是对于式子两边都有意义的角而言的.?
(3)sin2α读作“sinα”的平方,它与α2的正弦是不同的.
这两个关系式是两个三角恒等式,只要α的值使式子的两边都有意义,无论α取什么值,三个式子分别都是恒成立的,即式子的左右两边是恒等的.以后说到三角恒等式时,除特殊注明的情况外,也都假定是在使两边都有意义的情况下的恒等式.
这些关系式有哪些方面的应用呢?
①求值②化简③证明(学生边答,教师边板书).
所谓求值,就是已知某角的一个三角函数值,可以利用这些关系式,求出这个角其余的各三角函数值,但应该注意,利用平方关系求值时,由于要开平方,就面临一个正负号的选择问题,究竟选正号还是选负号,要由角所在的象限决定.
注意:
(1)应用平方关系求角的三角函数值时,一定要先确定角所在的象限.
(2)正确选用公式以及公式的变用或活用.
课本上的例1、例2、例3都是已知角α的一个三角函数值,求它的其余三角函数值问题,例1和例2有什么不同呢?
例1还告诉了角所在的象限,例2没有告诉.
例2没有告诉角所在的象限,求解的过程就比较复杂啦,因为已知一个角的某一三角函数值,这个角一般位于两个象限,故要分两种情况讨论求值.
现在我们来看一下例3,例3说明若角的某一三角函数值不是一个具体值(或者说是一个字母)时,又要分这个字母表示的数是正、是负、是零三种情况进行讨论,这又增加了问题的复杂程度.
归纳三个例题之情况,求值的问题有三种类型:
①已知某角的某一三角函数值,且知角的象限;
②已知某角的某一三角函数值,不知角的象限;
③已知某角的某一三角函数值为字母,不知角的象限.
对于第二、第三种类型一定要注意分情况讨论,否则,将导致解答的不完整.
下面我们来练习几个题
Ⅱ.课堂练习
课本P18练习1、2、3、4、5、6.
Ⅲ.课时小结
本节课我们学习了同角三角函数的基本关系,明确了关系式成立的条件以及关系式的作用,并对在求值方面的应用进行了练习与分析,特别要注意利用平方关系求值时正负号的选择问题,解决的关键是确定角所在的象限.求值问题有三种类型,对不清楚角所在象限的,一定要分一切可能情况,不遗漏地进行讨论.这些关系式贯穿于三角学习的始终,希望同学们很好掌握.
Ⅳ.课后作业
课本P23习题 7、8、9.





















同角三角函数的基本关系式
1.若()sinθ<1,则θ的取值范围是 ( )
A.{θ|+2kπ<θ<π+2kπ,k∈Z} B.{θ|π+2kπ<θ<2π+2kπ,k∈Z}
C.{θ|2kπ<θ<π+2kπ,k∈Z} D.{θ|+2kπ<θ<π+2kπ,k∈Z}
2.若sinθ=,且θ为第二象限角,则tanθ的值等于( )
A.- B.± C.± D.
3.已知α为锐角,且2tanα+3sinβ=7,tanα-6sinβ=1,则sinα的值为 ( )
A. B. C. D.
4.设=-1,则的值是 ( )
A.4 B.6 C.5 D.
5.已知sinθ-cosθ=,则sin3θ-cos3θ= .
6.已知tanα=2,则2sin2α-3sinαcosα-2cos2α= .
7.化简 eq \r() + eq \r() (α为第四象限角)= .
8.已知cosθ=t,求sinθ,tanθ的值.















9.已知tanα=2,求下列各式的值.
(1) (2)
(3) sin2α+cos2α


































同角三角函数的基本关系式答案
1.C 2.A 3.A 4.C 5. 6.0 7.-
8.已知cosθ=t,求sinθ,tanθ的值.
分析:依据cosθ=t,对t进行分类讨论,利用同角三角函数关系式化简求值.
解:(1)当0<t<1时,θ为第一或第四象限角,
θ为第一象限角时,sinθ==,tanθ== eq \f(,t)
θ为第四象限时,sinθ=-,tanθ=- eq \f(,t)
(2)当-1<t<0时,θ在第二或第三象限,
θ为第二象限时,sinθ=,tanθ= eq \f(,t)
θ为第三象限时,sinθ=-,tanθ=- eq \f(,t)
(3)当t=1时,θ=2kπ(k∈Z),sinθ=0,tanθ=0,
(4)当t=0时,θ=2kπ±(k∈Z)
θ=2kπ+ (k∈Z)时,sinθ=1,tanθ不存在
θ=2kπ- (k∈Z)时,sinθ=-1,tanθ不存在.
(5)当t=-1时,θ=2kπ+π(k∈Z)
sinθ=0,tanθ=0
9.已知tanα=2,求下列各式的值.
(1) (2)
(3) sin2α+cos2α
分析:依据已知条件tanα=2,求出sinα与cosα,或将所求式子用tanα表示出来.
解:(1)∵cosα≠0
∴ 原式= eq \f(,) ==
(2)∵cos2α≠0
∴==
(3) sin2α+cos2α
= eq \f(sin2α+cos2α, sin2α+cos2α) = eq \f(tan2α+,tan2α+1) =.





- 5 -


第三课时 弧度制(一)
教学目标:
理解1弧度的角、弧度制的定义,掌握角度与弧度的换算公式并能熟练地进行角度与弧度的换算,熟记特殊角的弧度数;使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但是互相联系的、辩证统一的.进一步加强对辩证统一思想的理解.
教学重点:
使学生理解弧度的意义,正确地进行角度与弧度的换算.
教学难点:
弧度的概念及其与角度的关系.
教学过程:
Ⅰ.课题导入
在初中几何里,我们学习过角的度量,1°的角是怎样定义的呢?
周角的为1°的角.
这种用度作为单位来度量角的单位制叫做角度制,今天我们再来学习另一种在数学和其他学科中常用的度量角的单位制——弧度制.
Ⅱ.讲授新课
[师]弧度制的单位符号是rad,读作弧度.
我们把长度等于半径长的弧所对的圆心角叫做1弧度的角.即用弧度制度量时,这样的圆心角等于1 rad.
请同学们考虑一下,周角的弧度数是多少?平角呢?直角呢?
因为周角所对的弧长l=2πr,所以周角的弧度数是=2π.同理平角的弧度数是=π,直角的弧度是.
由此可知,任一0°到360°的角的弧度数x(x=),必然适合不等式0≤x<2π.角的概念推广后,弧度的概念也随之推广.如果圆心角表示一个负角,且它所对的弧长l=4πr时,这个圆心角的弧度数是多少呢?此时,我们应该先求出这个角的绝对值,然后在其前面放上“-”号,即所求圆心角的弧度数是-=-=-4π
一般地,正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是零.任一角α的弧度数的绝对值|α|=,其中l是以角α为圆心角时所对弧的长,r是圆的半径,这种以弧度作为单位来度量角的单位制叫做弧度制.
从定义中我们可以看出,弧度制实质上是用弧长与其半径的比值来反映弧所对圆心角的大小,这个比值与半径的大小有没有关系呢?
这个比值与半径的大小无关而只与角的大小有关,即这样定义是合理的.
用角度制和弧度制度量零角,单位不同,但量数相同(都是0),用角度制和弧度制度量任一非零角,单位不同,量数也不同.下面我们来讨论角度与弧度的换算.
因为周角的弧度数是2π,而在角度制下它是360°,所以360°=2π rad.
180°=π rad1°=rad 角度化弧度时用之.
1 rad=()° 弧度化角度时用之
Ⅲ.例题分析
[例1]把67°30′化成弧度
解:∵67°30′=(67)°
∴67°30′=rad×67=π rad.
[例2]把 π rad化成度
解:π rad=π×()°=×180°=108°
注意:
(1)今后用弧度制表示角时,或者说“弧度”为单位度量角时,“弧度”二字或符号“rad”可以省略不写,而只写这个角的弧度数.(此时的弧度在形式上是不名数,但应当把它理解为名数.如α=2,即α是2 rad的角,sin3表示3 rad角的正弦,π=180°即π rad=180°).但用角度制表示角时,或者用“度”为单位度量角时,“度”即“°”不能省去.
(2)用弧度制表示角时,或者说用“弧度”为单位度量角时,常常把弧度数写成多少π的形式,如无特别要求,不必把π写成小数.
(3)今后在表示与角α终边相同的角时,有弧度制与角度制两种单位制,要根据角α的单位来决定另一项的单位,即两项所用的单位制必须一致,绝对不能出现k·360°+或者
2kπ-60°一类的写法.
Ⅳ.课堂练习
课本P10练习 1、2、3、4、7
对于练习中的1题再补充将60°、135°、150°化成弧度;3题再补充将11°15′化成弧度.
Ⅴ.课堂小结
本节课我们学习了弧度制的定义,角度与弧度的换算公式与方法.应该注意,角度制与弧度制是度量角的两种不同的单位制,它们是互相联系的,辩证统一的;角度与弧度的换算,关键要理解并牢记180°=π rad这一关系式,由此可以很方便地进行角度与弧度的换算;三个注意的问题,同学们要切记;特殊角的弧度数,同学们要熟记.
Ⅵ.课后作业
(一)课本P10习题 3、6、7
(二)预习内容:课本P9


弧度制(一)
1.角α的顶点在坐标原点,始边在x轴的正半轴上,当终边过点A(,)时,角α是 ( )
A.第一象限角 B.第二象限角
C.第三象限角 D.第四象限角
2.若-<α<β<,则α-β的范围是 ( )
A.-π<α-β<0 B.-<α-β<0
C.-<α-β<π D.-π<α-β<
3.设集合M={α|α=-,k∈Z},N={α|-π<α<π},则M∩N等于 ( )
A.{-,} B.{-,}
C.{-,,-,} D.{ ,- }
4. 下列各组角中,终边相同的角是 ( )
A. 与kπ+ (k∈Z) B.kπ±与 (k∈Z)
C.(2k+1)π与(4k±1)π (k∈Z) D.kπ+与2kπ± (k∈Z)
5.若角α、β的终边关于y轴对称,则α、β的关系一定是(其中k∈Z) ( )
A.α+β=π B.α-β=
C.α-β=(2k+1)π D.α+β=(2k+1)π
6.在与210°终边相同的角中,绝对值最小的角的弧度数为_________.
7.4弧度角的终边在第 象限.
8.-πrad化为角度应为 .
9.钝角α的终边与它的5倍角的终边关于y轴对称,则α=_________.
10.自行车大链轮有48个齿,小链轮有20个齿,彼此由链条连接,当大链轮转过一周时,小链轮转过的角度是多少度?多少弧度??





11.如下图,圆周上点A依逆时针方向做匀速圆周运动.已知A点1分钟转过θ(0<θ<π)角,2分钟到达第三象限,14分钟后回到原来的位置,求θ.





































弧度制(一)答案
1.B 2.A 3.C 4. C 5.D 6.- 7.三 8.-345° 9.
10.自行车大链轮有48个齿,小链轮有20个齿,彼此由链条连接,当大链轮转过一周时,小链轮转过的角度是多少度?多少弧度??
分析:在相同时间内,两轮转动的齿数相同,是解决问题的关键,因此,两轮转过的圈数之比与它们的齿数成反比,使问题得以解决.
解:由于大链轮与小链轮在相同时间内转过的齿数相同,所以两轮转过的圈数之比与它们的齿数成反比,于是大轮转过的圈数:小转轮过的圈数=20∶48
据此解得当大轮转1周时,小轮转2.4周.
故小轮转过的角度为360°×2.4=864°
小轮转过的弧度为864°×=rad.
答:当大链轮转过一周时,小链轮转过的角度是864°,弧度是rad.
11.如下图,圆周上点A依逆时针方向做匀速圆周运动.已知A点1分钟转过θ(0<θ<π)角,2分钟到达第三象限,14分钟后回到原来的位置,求θ.
解:A点2分钟转过2θ,且π<2θ<
14分钟后回到原位,∴14θ=2kπ,
θ=,且<θ<,
∴θ=或






- 5 -


第十课时 诱导公式(二)
教学目标:
理解诱导公式的推导方法,掌握诱导公式并运用之进行三角函数式的求值、化简以及简单三角恒等式的证明,培养学生化归、转化的能力;通过诱导公式的应用,使学生认识到转化“矛盾”是解决问题的一条行之有效的途径.
教学重点:
理解并掌握诱导公式.
教学难点:
诱导公式的应用——求三角函数值,化简三角函数式,证明简单的三角恒等式.
教学过程:
Ⅰ.复习回顾
公式一~公式四
函数名不变,正负看象限.
Ⅱ.检查预习情况
由-α与α的终边关于直线y=x对称,可得:
公式五:sin(-α)=cosα,cos(-α)=sinα
利用公式二和公式五可得:
公式六:sin(+α)=cosα,cos(+α)=-sinα
公式一~公式六统称为诱导公式
Ⅲ.例题分析
课本P22例3,例4
补充例题:
[例1]化简
解:原式=
==-
[例2]化简
解:原式=

==
===cos300=
[例2]已知关于x的方程4x2-2(m+1)x+m=0的两个根恰好是一个直角三角形的两个锐角的余弦,求实数m的值.
分析:依据已知条件及根与系数关系,列出关于m的方程去求解.
解:设直角三角形的两个锐角分别为α、β,则可得α+β=,
∴cosα=sinβ
∵方程4x2-2(m+1)x+m=0中
Δ=4(m+1)2-4·4m=4(m-1)2≥0
∴当m∈R,方程恒有两实根.
又∵cosα+cosβ=sinβ+cosβ=
cosα·cosβ=sinβcosβ=
∴由以上两式及sin2β+cos2β=1,得
1+2·=()2 解得m=±
当m=时,cosα+cosβ=>0,
cosα·cosβ=>0,满足题意,
当m=-时,
cosα+cosβ=<0,这与α、β是锐角矛盾,应舍去.
综上,m=
Ⅳ.课堂练习
课本P23练习 1、2、3、4.
Ⅴ.课时小结
本节课同学们自己导出了公式五、公式六,完成了教材中诱导公式的学习任务,为求任意角的三角函数值“铺平了道路”.利用这些公式,可把任意角的三角函数转化为锐角三角函数,为求值带来很大的方便,这种转化的思想方法,是我们经常用到的一种解题策略,要细心去体会、去把握.利用这些公式,还可以化简三角函数式,证明简单的三角恒等式,我们要多练习,在应用中达到熟练掌握的程度.
Ⅵ.课后作业
课本P24习题14、15、18.




































诱导公式(二)
1.下列不等式中,正确的是 ( )
A.sinπ>sinπ B.tanπ>tan(-)
C.sin(-)>sin(-) D.cos(-π)>cos(-π)
2.tan300°+sin450°的值为 ( )
A.1+ B.1- C.-1- D.-1+
3.已知cos(π+θ)=-,θ是第一象限角,则sin(π+θ)和tanθ的值分别为( )
A. ,- B.-, C.-,- D.-,-
4.已知x∈(1,),则|cosπx|+|cos|-|cosπx+cos|的值是 ( )
A.0 B.1 C.2 D.-1
5.= .
6.若α是第三象限角,则= .
7.sin2(-x)+sin2(+x)= .
8.已知sin(π-α)-cos(π+α)= (<α<π,
求sinα-cosα与sin3(+α)+cos3(+α)的值.














9.设sinα=,cosβ=-,且α、β不在同一象限,求sin(α+β)的值.



















10.已知cos(75°+α)=,其中α为第三象限角,求cos(105°-α)+sin(α-105°)的值.
















诱导公式(二)答案
1.B 2.B 3.B 4.A 5. 6.-sinα-cosα 7.1
8.已知sin(π-α)-cos(π+α)= (<α<π,
求sinα-cosα与sin3(+α)+cos3(+α)的值.
分析:对已知条件中的式子与所求式子先利用诱导公式化简,求得sinαcosα,进而求得sinα-cosα的值.
解:∵sin(π-α)-cos(π+α) = (<α<π)
∴sinα+cosα=
将其两边平方得:1+2sinαcosα=
∴sinαcosα=-, ∵<α<π
∴sinα-cosα
==
又sin3(+α)+cos3(+α)
=sin3[π-(-α)]+cos3[π-(-α)]
=sin3(-α)-cos3(-α)=-sin3α+cos3α
=(cosα-sinα)(cos2α+sinαcosα+cos2α)
=-·(1-)=-
9.设sinα=,cosβ=-,且α、β不在同一象限,求sin(α+β)的值.
分析:依据已知条件可得α、β满足条件的情况有:
(1)α在第一象限,β在第二象限;
(2)α在第一象限,β在第三象限;
(3)α在第二象限,β在第三象限.
解:(1)当α在第一象限,β在第三象限时,
α=2kπ+ (k∈Z),β=2nπ+ (n∈Z),则有:
α+β=2(k+n)π+π
sin(α+β)=sinπ=
(2)当α在第一象限,β在第二象限时,α=2kπ+ (k∈Z),β=2nπ+π(n∈Z)则有:α+β=2(k+n)π+π
sin(α+β)=sinπ=sinπ=-1
(3)当α在第二象限,β在第三象限时,α=2kπ+π(k∈Z),β=2nπ+π(n∈Z)则有:α+β=2(k+n)π+π
sin(α+β)=sinπ=sin=
综上,得sin(α+β)=

10.已知cos(75°+α)=,其中α为第三象限角,求cos(105°-α)+sin(α-105°)的值.
分析:依据已知条件与所求结论,寻求它们的关系(75°+α)+(105°-α)=180°,结合三角函数诱导公式求得.
解:∵cos(105°-α)=cos[180°-(75°+α)]=-cos(75°+α)=-
sin(α-105°)=-sin[180°-(75°+α)]=-sin(75°+α)
∵cos(75°+α)= >0
又∵α为第三象限角,∴75°+α为第四象限角
∴sin(75°+α)=-
=- eq \r(1-()2) =-
∴cos(105°-α)+sin(α-105°)
=-+=





- 7 -


第十一课时 三角函数的周期性
教学目标:
掌握函数的周期性,会求简单函数的最小正周期,掌握正弦函数、余弦函数的周期及求法;渗透数形结合思想,培养辩证唯物主义观点.
教学重点:
正、余弦函数的周期
教学难点:
函数的周期性
教学过程:
由单位圆中的三角函数线可知,正、余弦函数值的变化呈现出周期现象,每当角增加(或减少)2π,所得角的终边与原来角的终边相同,故两角的正、余弦函数值也分别相同.即有:
sin(2π+x)=sinx,cos(2π+x)=cosx,
正弦函数和余弦函数所具有的这种性质称为周期性.
一般地,对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期.
由此可知,2π,4π,…,-2π,-4π,…2kπ(k∈Z且k≠0)都是这两个函数的周期.
对于一个周期函数f(x),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.
根据上述定义,可知:
正弦函数、余弦函数都是周期函数,2kπ(k∈Z且k≠0)都是它的周期,最小正周期是2π.
以后如果不加特别说明,函数的周期一般都是指最小正周期
正切函数是周期函数,且周期T=π
课本P26例1、例2
一般地,函数y=Asin(ωx+)及y=Acos(ωx+)(其中A、ω、为常数,且A≠0,ω>0)的周期T=,函数y=Atan (ωx+)的周期T=
周期函数应注意以下几点:
1.式子f(x+T)=f(x)对定义域中的每一个值都成立.即定义域内任何x,式子都成立.而不能是“一个x”或“某些个x”,另一方面,判断一个函数不是周期函数,只需举一个反例就行了.
例如:由于sin(+)=sin,即sin(x+)=sinx.该式中x取时等式成立,能否断定是sinx的周期呢?不能,因对于其他一些x值该式不一定成立.如x=时,sin(x+)≠sinx.
[例]函数y=cosx(x≠0)是周期函数吗?
解:不是,举反例,当T=2π时,令x=-2π,则有cos(x+2π)=cos(-2π+2π)=cos0=1,但x=0,不属于题设的定义域,则x不能取-2π,故y=cosx(x≠0)不是周期函数.
2.式子f(x+T)=f(T)是对“x”而言.
例如,由cos( +2kπ)=cos (k∈Z),是否可以说cos的周期为2kπ呢?不能!因为cos( +2kπ)=cos,即cos=cos (k∈Z),所以cos的周期是6kπ,而不是2kπ(k∈Z).
3.一个函数是周期函数,但它不一定有最小正周期.例如,f(x)=a(常数),显然任何一个正数T都是f(x)的周期,由于正数中不存在最小的数,所以周期函数f(x)=a无最小正周期.
4.设T是f(x)(x∈R)的周期,那么kT(k∈Z,且k≠0)也一定是f(x)的周期,定义规定了T为一个实常数,而不是一个变数;同时也规定了T的取值范围,只要求不为零,不要误认为T一定是π的倍数.
有许多周期函数的周期中是不含“π”的,如下面几例:
[例1]函数y=sinπx的周期是T==2.
[例2]函数y=tan2πx的周期是T==.
[例3]若对于函数y=f(x)定义域内的任何x的值,都有f(x+1)=f(x)成立,则由周期函数的定义可知,函数y=f(x)是周期函数,且T=1是其周期.
[例4]设f(x)定义在R上,并且对任意的x,有f(x+2)=f(x+3)-f(x+4).
求证:f(x)是周期函数,并找出它的一个周期.
证明:∵f(x+2)=f(x+3)-f(x+4) ①
∴f(x+3)=f(x+4)-f(x+5) ②
①+②得:f(x+2)=-f(x+5) ③
由③得:f(x+5)=-f(x+8) ④
∴f(x+2)=f(x+8)
即f(x)=f(x+6)
∴f(x)为周期函数,一个周期为6.
5.周期函数必须是函数,但一定要克服思维定势,认为周期性是三角函数所独有的,实质上我们学过的非周期函数f(x)(如y=log2x,y=|x|,y=2x,y=x2等等)将其定义域内限制在一个半开半闭区间上,经左右平移,可以延拓变为周期函数,例如将非周期函数y=x2(x∈R)在其定义域R内限制在(-1,1],然后将y=x2(-1<x≤1)的图象左、右平移,可以延拓为最小正周期为2的周期函数f(x)=(x-2k)2(2k-1<x≤2k+1),k∈Z,如图:

[例]已知f(x)=|x|,x∈(-1,1],求定义在R上的一个周期为2的函数g(x),使x∈(-1,1]时,g(x)=f(x).
解:由g(x)的周期性可画出g(x)的图象.如图:

对于任意的x∈R,x一定在周期为2的区间(2n-1,2n+1]内,则x-2n∈(-1,1].
∴g(x)=g(x-2n)=f(x-2n)=|x-2n|,
即g(x)=
评述:(1)要判定f(x)是周期函数,自变量x必须取遍定义域内的每一个值.
(2)周期函数是高考中的热点,只有深层次的理解周期函数的意义,才能臻化入境,运用自如.
课堂练习:
课本P27 练习1~4
课时小结:
要初步掌握三角函数的周期性.
课后作业:
课本P45 习题 1





- 2 -


第四课时 弧度制(二)
教学目标:
理解角的集合与实数集R之间的一一对应关系,掌握弧度制下的弧长公式、扇形面积公式,运用弧长公式、扇形面积公式解、证一些题目;使学生通过总结引入弧度制的好处,学会归纳、整理并认识到任何新知识的学习,都会为我们解决实际问题带来方便,从而激发学生的学习兴趣、求知欲望,培养良好的学习品质.
教学重点:
角的集合与实数集R之间的一一对应关系,弧度制的简单应用.
教学难点:
弧度制的简单应用
教学过程:
角的集合与实数集R之间是一一对应的,即正角对应正实数,负角对应负实数,零角对应0.在弧度制下,弧长公式是怎样的呢?
l=|α|r,其中l表示弧长,r表示圆半径,α表示圆心角的弧度数.
扇形的面积公式S=lR.其中l是扇形的弧长,R是圆的半径,在弧度制下证明,同学们是否想过在角度制下的证明,比较之,哪个方法更简便些?
能够写出弧度制下扇形的面积公式吗?即用角的弧度数α与圆的半径R表示扇形的面积.
S=|α|R2.
引入弧度制有什么好处呢?
弧度制下的弧长公式比角度制下的弧长公式简单,弧度制下的扇形面积公式比角度制下的扇形面积公式简单,还有一点,弧度表示角时,找与角对应的实数相当方便,而角度表示角时,找与角对应的实数还须进行一番计算.
[例1]已知一扇形的周长为c(c>0),当扇形的弧长为何值时,它有最大面积?并求出面积的最大值.
解:设扇形的半径为R,弧长为l,面积为S
∵c=2R+l,∴R= (l<c)
则S=Rl=×·l=(cl-l2)
=-(l2-cl)=-(l-)2+
∴当l=时,Smax=
答:当扇形的弧长为 时,扇形有最大面积,扇形面积的最大值是.
[例2]一个扇形OAB的面积是1平方厘米,它的周长是4厘米,求∠AOB和弦AB的长.
分析:欲求∠AOB,需要知道的长和半径OA的长,用弧度制下的弧长公式和扇形面积公式,结合已知条件,能比较容易地求得,之后在△AOB中求弦AB的长.作OM⊥AB交AB于M,则AM=BM=AB,在Rt△AMO中求AM.
解:设扇形的半径为R cm.∠AOB=α rad.
据题意 解之得
过O作OM⊥AB交AB于M.
则AM=BM=AB.
在Rt△AMO中,AM=sin1,∴AB=2sin1
故∠AOB=2 rad.该AB的长为2sin1厘米.
Ⅱ.课堂练习
课本P10练习 5、6
Ⅲ.课时小结
这节课,同学们自己找到了角的集合与实数集R的一一对应关系,对弧度制下的弧长公式、扇形面积公式有了深刻的理解,要把这两个公式记下来,并在解决实际问题中灵活运用,大家能总结出引入弧度制的好处,这点很好,以后的学习中,我们就是要随着学习内容的增加、知识的丰富,不断总结,不断归纳,梳理知识,编织知识的网络,使易记、好用.特别是生丙、生戊善于联想、积极探索的学习品质,更是我们大家学习的榜样,同学们这样持之以恒的坚持下去,我们的数学学习效果将会是非常出色的.
Ⅳ.课后作业
(一)课本P10习题 8、9、13.
(二)1.预习内容:任意角的三角函数(P12~P15)
2.预习提纲:锐角三角函数是用边的比来定义的,任意角的三角函数是怎样定义的?













弧度制(二)
1.一钟表的分针长10 cm,经过25分钟,分针的端点所转过的长为__________cm. ( )
A.70 B. C. -4 D.
2.如果弓形的弧所对的圆心角为,弓形的弦长为4 cm,则弓形的面积是_____cm2.( )
A. -4 B. -4
C. -4 D. -2
3.设集合M={α|α=kπ±,k∈Z},N={α|α=kπ+(-1)k ,k∈Z}那么下列结论中正确的是 ( )
A.M=N B.MN C.N M D.MN且NM
4.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数为 ( )
A. B. C. D.2
5.已知扇形的圆心角为2 rad,扇形的周长为8 cm,则扇形的面积为_________cm2.
6.圆的半径变为原来的3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角
的 倍.
7.若角α的终边与π角的终边相同,则在[0,2π]上,终边与角的终边相同的角是 .
8.已知扇形AOB的圆心角α=120°,半径r=3,求扇形的面积.




9.1弧度的圆心角所对的弦长为2,求这个圆心角所对的弧长及圆心角所夹的扇形的面积.





10.已知扇形的周长为20 cm,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?



弧度制(二)答案
1.D 2.C 3.C 4.C 5.4 6. 7.π π π π
8.已知扇形AOB的圆心角α=120°,半径r=3,求扇形的面积.
解:α=120°=rad
∴S=r2α=×32×=3π(面积单位)
答:扇形的面积为3π面积单位.
9.1弧度的圆心角所对的弦长为2,求这个圆心角所对的弧长及圆心角所夹的扇形的面积.
解:由已知可得r=, ∴l=r·α=
S扇=l·r=·r2·α=·=
10.已知扇形的周长为20 cm,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?
解:∵l=20-2r
∴S=lr= (20-2r)·r=-r2+10r=-(r-5)2+25
∴当半径r=5 cm时,扇形的面积最大为25 cm2
此时,α===2(rad)











- 3 -


第五课时 任意角的三角函数(一)
教学目标:
理解并掌握任意角三角函数的定义,理解并掌握各种三角函数在各象限内的符号,理解三角函数是以实数为自变量的函数,掌握正弦、余弦、正切函数的定义域;使学生通过任意角三角函数的定义,认识锐角三角函数是任意角三角函数的一种特例,加深特殊与一般关系的理解.
教学重点:
任意角三角函数的定义,正弦、余弦、正切函数的定义域.
教学难点:
正弦、余弦、正切函数的定义域.
教学过程:
Ⅰ.课题导入
在初中我们学习了锐角三角函数,它是以锐角为自变量,边的比值为函数值的三角函数,前面我们对角的概念进行了扩充,并学习了弧度制,知道角的集合与实数集是一一对应的,在这个基础上,今天我们来研究任意角的三角函数.
Ⅱ.讲授新课
对于锐角三角函数,我们是在直角三角形中定义的,今天,对于任意角的三角函数,我们利用平面直角坐标系来进行研究.
设α是一个顶点在原点,始边在x轴正半轴上的任意角,α的终边上任意一点P的坐标是(x,y)(非顶点).它与原点的距离是r(r=>0)
注意:(1)以后我们在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x轴的正半轴重合.
(2)OP是角α的终边,至于是转了几圈,按什么方向旋转的不清楚,也只有这样,才能说明角α是任意的.
(3)角α的终边只要不落在坐标轴上,就只能是象限角.
(4)角α的终边不是不能落在坐标轴上,而是说落在坐标轴上的情况属于特殊情形,我们将在研究问题的过程中对其进行讨论.
那么,(1)比值 叫做α的正弦,记作sinα,即sinα= .
(2)比值 叫做α的余弦,记作cosα,即cosα=.
(3)比值 叫做α的正切,记作tanα,即tanα= .
以上三种函数统称为三角函数.
确定的角α,它的终边上任意一点P的坐标都是变量,它与原点的距离r也是变量,这三个变量的三个比值究竟是确定的还是变化的?
根据相似三角形的知识,对于终边不在坐标轴上确定的角α,上述三个比值都不会随P点在α的终边上的位置的改变而改变.当角α的终边在纵轴上时,即α=kπ+(k∈Z)时,终边上任意一点P的横坐标x都为0,所以tanα无意义,除此之外,对于确定的角α,上面的三个比值都是唯一确定的实数,这就是说,正弦、余弦、正切都是以角为自变量,以比值为函数值的函数.
注意:(1)sinα是个整体符号,不能认为是“sin”与“α”的积.其余两个符号也是这样.
(2)定义中只说怎样的比值叫做α的什么函数,并没有说α的终边在什么位置(终边在坐标轴上的除外),即函数的定义与α的终边位置无关.
(3)比值只与角的大小有关.
我们已经给出了任意角三角函数的定义,请同学们考虑并比较一下,我们给出的任意角的三角函数的定义与锐角三角函数的定义,有什么联系与区别?
正弦函数值是纵坐标比距离,余弦函数值是横坐标比距离,正切函数值是纵坐标比横坐标.
由于角的集合与实数集R之间是一一对应的,所以三角函数可以看成是以实数为自变量的函数.我们知道,函数有三个要素,即定义域、值域、对应法则,下面我们就来研究正弦、余弦、正切函数的定义域,值域问题待后再作研究.
对于正弦函数sinα=,因为r>0,所以 恒有意义,即α取任意实数,恒有意义,也就是说sinα恒有意义,所以正弦函数的定义域是R;类似地可写出余弦函数的定义域;对于正切函数tanα=,因为x=0时,无意义,即tanα无意义,又当且仅当角α的终边落在纵轴上时,才有x=0,所以当α的终边不在纵轴上时,恒有意义,即tanα恒有意义,所以正切函数的定义域是α≠kπ+(k∈Z).

为了几何表示的需要,我们先来看单位圆的概念:以原点为圆心,单位长为半径的圆称为单位圆.单位长——如1 cm、1 dm、1m、1 km等等,都是1个单位长,它们的单位虽不同,但长度都是1个单位长.即单位圆的半径是1(个单位长).
在平面直角坐标系内,作单位圆,设任意角α的顶点在原点,始边与x轴的非负半轴重合,终边与单位圆相交于点P(x,y),x轴的正半轴与单位圆相交于A(1,0),过P作x轴的垂线,垂足为M;过A作单位圆的切线,这条切线必平行于y轴(垂直于同一条直线的两直线平行),设它与角α的终边或其反向延长线交于点T.
显然,线段OM的长度为|x|,线段MP的长度为|y|,它们都只能取非负值.
当角α的终边不在坐标轴上时,我们可以把OM、MP都看作带有方向的线段。
如果x>0,OM与x轴同向,规定此时OM具有正值x;如果x<0,OM与x轴正向相反(即反向),规定此时OM具有负值x,所以不论哪一种情况,都有OM=x.
如果y>0,把MP看作与y轴同向,规定此时MP具有正值y;如果y<0,把MP看作与y轴反向,规定此时MP具有负值y,所以不论哪一种情况,都有MP=y,由上面所述,OM、MP都是带有方向的线段,这种被看作带有方向的线段叫做有向线段(即规定了起点和终点),把它们的长度添上正号或负号,这样所得的数,叫做有向线段的数量,记为AB
于是,根据正弦、余弦函数的定义,就有
sinα= = =y=MP
cosα= ==x=OM
这两条与单位圆有关的有向线段MP、OM分别叫做角α的正弦线、余弦线.
类似地,我们把OA、AT也看作有向线段,那么根据正切函数的定义和相似三角形的
知识,就有tanα= ==AT
这条与单位圆有关的有向线段AT,叫做角α的正切线.
注意:(1)当角α的终边在y轴上时,余弦线变成一个点,正切线不存在.
(2)当角α的终边在x轴上时,正弦线、正切线都变成点.
(3)正弦线、余弦线、正切线都是与单位圆有关的有向线段,所以作某角的三角函数线时,一定要先作单位圆.
(4)线段有两个端点,在用字母表示正弦线、余弦线、正切线时,要先写起点字母,再写终点字母,不能颠倒;或者说,含原点的线段,以原点为起点,不含原点的线段,以此线段与x轴的公共点为起点.
(5)三种有向线段的正负与坐标轴正反方向一致,三种有向线段的数量与三种三角函数值相同.
正弦线、余弦线、正切线统称为三角函数线.
Ⅲ.例题分析
[例1]已知角α的终边经过点P(2,-3)(如图),求α的三个三角函数值.
解:∵x=2,y=-3
∴r==
于是sinα= ==-
cosα===
tanα= =-
[例2]求下列各角的三个三角函数值.
(1)0 (2)π (3)
解:(1)因为当α=0时,x=r,y=0,所以
sin0=0 cos0=1 tan0=0
(2)因为当α=π时,x=-r,y=0,所以
sinπ=0 cosπ=-1 tanπ=0
(3)因为当α=时,x=0,y=-r,所以
sin=-1 cos=0 tan不存在
Ⅳ.课堂练习
课本P16练习 1、2、3.
Ⅴ.课时小结
任意角三角函数的定义,正弦函数、余弦函数、正切函数的定义域,单位圆的概念,有向线段的定义,正弦线、余弦线、正切线的定义,这三种三角函数线都是一些特殊的有向线段,其之所以特殊,一是其与坐标轴平行(或重合),二是其与单位圆有关,这些线段分别都可以表示相应三角函数的值,所以说它们是三角函数的一种几何表示.
Ⅵ.课后作业
课本P23习题 1、2、3.
























任意角的三角函数(一)
1.sin1、cos1、tan1的大小关系是 ( )
A.tan1<cos1<sin1 B.sin1<cos1<tan1
C.sin1<tan1<cos1 D.cos1<sin1<tan1
2.已知角α的正弦线和余弦线是方向一正一反、长度相等的有向线段,则α的终边在( )
A.第一象限角平分线上 B.第二象限角平分线上
C.第二或第四象限角平分线上 D.第一或第三象限角平分线上
3.如果<θ<,那么下列各式中正确的是 ( )
A.cosθ<tanθ<sinθ B.sinθ<cosθ<tanθ
C.tanθ<sinθ<cosθ D.cosθ<sinθ<tanθ
4.若点P(-3,y)是角α终边上一点,且sinα=-,则y的值是________.
5.已知角α终边上一点P的坐标是(4a,3a)(a<0),则sinα=_________,cosα=_________,tanα=_________.
6.如果角α的顶点在坐标原点,始边与x轴的正半轴重合.终边在函数y=-3x(x≤0)的图象上,则sinα=_________,cosα=_________,tanα=_________.
7.已知角θ的终边上一点P的坐标是(x,-2)(x≠0),且cosθ=,求sinθ和tanθ的值.








8.已知角α终边上有一点P(x,1)(x≠0),且cosα=x,求sinα的值.






9.已知θ是第一象限角,试利用三角函数线证明:sinα+cosα>1.



任意角的三角函数(一)答案
1.D 2.C 3.D 4.- 5.- - 6. - -3
7.已知角θ的终边上一点P的坐标是(x,-2)(x≠0),且cosθ=,求sinθ和tanθ的值.
分析:r=,又cosθ==,即rx=3x
由于x≠0,∴r=3
∴x2+4=9 x2=5,x=±.
当x=时,P点的坐标是(,-2).
sinθ= ==-,tanθ= ==-.
当x=-时,P点的坐标是(-,-2)
sinθ= ==-,tanθ= ==.
答案:当x=时,sinθ=-,tanθ=?-?
当x=-时,sinθ=-,tanθ=
8.已知角α终边上有一点P(x,1)(x≠0),且cosα=x,求sinα的值.
分析:由任意角的三角函数的定义
cosα==x,∴r=2 ∴sinα==.
另:用x、1表示出r,即r=
再由cosα=x,求出x.
进一步求得sinα也可.
9.已知θ是第一象限角,试利用三角函数线证明:sinα+cosα>1.
提示:作出单位圆以及正弦线、余弦线,利用三角形两边和大于第三边可证得.




- 5 -