专题1基因工程

文档属性

名称 专题1基因工程
格式 rar
文件大小 2.5MB
资源类型 教案
版本资源 人教版(新课程标准)
科目 生物学
更新时间 2008-09-19 18:21:00

文档简介

课件30张PPT。DNA重组技的基本工具专题1基因工程科技探索之路 基础理论和技术的发展催生了基因工程什么叫基因工程? 基因工程又叫基因拼接技术或DNA重组技术。该技术是在生物体外,通过对DNA分子进行人工“剪切”和“拼接”,对生物的基因进行改造和重新组合,然后导入受体细胞内进行无性繁殖,使重组基因在受体细胞内表达,产生出人类所需要的基因产物。(一)基因工程的概念基因拼接技术或DNA重组技术生物体外基因DNA分子水平人类需要的基因产物剪切→ 拼接→ 导入→ 表达基因重组基因工程培育抗虫棉的简要过程:普通棉花(无抗虫特性)苏云金芽孢杆菌提取抗虫基因与运载体DNA拼接
导入棉花细胞(含抗虫基因)棉花植株(有抗虫特性)上述培育抗虫棉的关键步骤是什么?基因工程培育抗虫棉的关键步骤:关键步骤一:抗虫基因从苏云金芽孢杆菌细胞内提取出来关键步骤二:抗虫基因与运载体DNA连接关键步骤三:抗虫基因导入受体(棉花)细胞解决培育抗虫棉的关键步骤需要哪些工具?关键步骤一的工具:
关键步骤二的工具:
关键步骤三的工具:基因的剪刀——限制性内切酶
基因的针线——DNA连接酶
基因的运载工具——运载体1. 限制性核酸内切酶——“分子手术刀” 限制酶是在生物体(主要是微生物)内的一种酶,能将外来的DNA切断,由于这种切割作用是在DNA分子内部进行的,故名限制性内切酶。
特点:特异性。
即一种限制酶只能识别一种特定的核苷酸序列,并且能在特定的切点上切割DNA分子。(二)DNA重组技术的基本工具 大肠杆菌(E.coli)的一种限制酶能识别GAATTC序列,并在G和A之间切开。限制酶限制酶什么叫黏性末端? 被限制酶切开的DNA两条单链的切口,带有几个伸出的核苷酸,他们之间正好互补配对,这样的切口叫黏性末端。要想获得某个特定性状的基因必须要用限制酶切几个切口?可产生几个黏性末端?要切两个切口,产生四个黏性末端。如果把两种来源不同的DNA用同一种限制酶来切割,会怎样呢? 会产生相同的黏性末端,然后让两者的黏性末端黏合起来,就似乎可以合成重组的DNA分子了。2. DNA连接酶——“分子缝合针” DNA连接酶可把黏性末端之间的缝隙“缝合”起来,即把梯子两边扶手的断口连接起来,这样一个重组的DNA分子就形成了。外源基因(如抗虫基因)怎样才能导入受体细胞(如棉花细胞)?导入过程需要运输工具——运载体。运载体的作用有哪些?作用一:作为运载工具,将外源基因(抗虫基因)转移到受体细胞(棉花细胞)中去。
作用二:利用运载体在受体细胞(棉花细胞)内,对外源基因(抗虫基因)进行大量复制。作为运载体必须具备哪些条件?1)能够在宿主细胞中复制并稳定地保存。
2)载体DNA必须有一个或多个限制酶切点,以便目的基因插入到载体上去。
3)具有某些标记基因,便于进行筛选。
如抗菌素的抗性基因、产物具有颜色反应的基因等。
载体DNA必须是安全的,不会对受体细胞有害,或不能进入到除受体细胞外的其他生物细胞中去;
5) 载体DNA分子大小应适合,以便提取和在体外进行操作,太大就不便操作.3.基因进入受体细胞的运载——”分子运输车” 常用的运载体主要有两类:
1)细菌细胞质的质粒
2)噬菌体或某些动植物病毒质粒: 质粒是染色体外能够进行自主复制的遗传单位,包括真核生物的细胞器和细菌细胞中核区外的DNA分子。现在习惯上用来专指细菌、酵母菌和放线菌等生物中核以外的DNA分子。
质粒是基因工程最常用的运载体。
绝大多数细菌质粒都是闭合环状DNA分子。有的一个细菌中有一个,有的一个细菌中有多个。大肠杆菌的质粒: 最常用的质粒是大肠杆菌的质粒,其中常含有抗药基因,如四环素的标记基因。质粒的存在与否对宿主细胞生存没有决定性作用,但复制只能在宿主细胞内成。双基练习:一、基因工程的概念
基因工程是指按照人们的愿望,进行严格的设计,通过体外____和____等技术,赋予生物以心得遗传特性,创造出符合人们的需要的新的____和____.又叫做DNA的重组技术 .
二、DNA重组技术的基本工具
1.限制性核酸内切酶-----”分子手术刀”
(1)主要来源:从____生物中分离出来的.
(2)特点:能够识别DNA特定的核苷酸序列,切开 两个____之间的_____ .
(3) DNA末端:限制酶切割DNA产生的DNA末端有两种形式:______和_______.
2. DNA连接酶----”分子缝合针”
(1)作用:将双链DNA____,恢复被限制酶切开的两个核苷酸之间的______.
(2)种类:
①E.coli DNA连接酶:只能缝合DNA的_____
②T4 DNA连接酶:既可缝合DNA的_____,又可缝合双链DNA的_______. 3.基因进入受体细胞的载体----”分子运输车”
(1)载体的种类
①质粒:是一种裸露的,结构简单,独立于细菌染色体之外,并能够自我_____能力的双链______ DNA 分子;②______的衍生物;③________.
(2)载体的特点
①能够在细胞内_______;②有一个或多个____切割位点,便于供源DNA的插入. ③具有_____基因,供重组DNA的鉴定和选择.课件33张PPT。基因工程的基本操作程序专题1基因工程基因工程的基本操作程序主要包括
四个基本步骤:1)目的基因的获取
2)基因表达载体的构建
3)将目的基因导入受体细胞
4)目的基因的检测与鉴定步骤一:目的基因的获取 目的基因是人们所需要转移或改造的基因,
获取目的基因是实施基因工程的第一步 。 如苏云金芽孢杆菌的抗虫基因,还有植物的抗病(抗病毒、抗细菌)基因、种子贮藏蛋白的基因,以及人的胰岛素基因、干扰素基因等。目的基因的提取方法直接分离基因
人工合成基因反转录法
根据已知的氨基酸序列合成DNA:鸟枪法1 . 鸟枪法(散弹射击法)
用限制酶将供体细胞中的DNA切成许多片段,将这些片段分别载入运载体,然后通过运载体分别转入不同的受体细胞,让供体细胞提供的外源DNA的所有片段分别在各个受体细胞中大量复制(即扩增),从中找出含有目的基因的细胞,再利用一定发方法将目的基因的DNA片段分离出来。1)反转录法:
以目的基因转录成的信使RNA为模板,反转录成互补的单链DNA,然后在酶的作用下合成双链DNA,从而获得所需的基因。目的基因的mRNA单链DNA(cDNA)双链DNA
(即目的基因)反转录合成2.人工合成基因法2)根据已知的氨基酸序列合成DNA法 : 根据已知蛋白质的氨基酸序列,推测出相应的信使RNA序列,然后按照碱基互补配对原则,推测出它的结构基因的核苷酸序列,再通过化学方法,以单核苷酸为原料合成目的基因。蛋白质的氨基酸序列mRNA的核苷酸序列结构基因的核苷酸序列推测推测目的基因化学合成上述三种目的基因提取的方法有何优缺点?操作简便广泛使用工作量大,盲目,分离出来的有时并非一个基因专一性强操作过程麻烦,mRNA很不稳定,要求的技术条件较高专一性最强仅限于合成核苷酸对较少的简单基因哪些新技术能大大简化基因工程的操作技术?1)DNA序列自动测序仪:
2)PCR技术: 对提取出来的基因进行核苷酸序列分析。 使目的基因的片段在短时间内成百万倍地扩增。3)从基因文库中获取目的基因:基因文库:
将含有某种生物不同基因的许多DNA片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物的不同的基因,称为基因文库(gene library)
基因组文库:
基因文库中包含了一种生物所有的基因,这种基因文库叫做基因组文库.
部分基因文库:
基因文库中包含了一种生物的一部分基因,这种基因文库叫做部分基因文库. 用DNA重组技术将某种生物的总DNA用特定的限制性内切酶切割成一个个片段,然后将这些片段随机地连接在某些质粒或其他载体上,再将它们转移到适当的宿主细胞中,通过细胞的增殖而构成各个片段的无性繁殖系(克隆),当这些克隆多到可以包括某种生物的全部基因时,这一批克隆的总体就称为该种生物的基因文库。这一定义也适用于线粒体DNA和叶绿体DNA,分别称为某种生物的线粒体基因文库或叶绿体基因文库。为了有效地保存基因文库,可通过细菌在固体培养基上繁殖而使包含各个特定DNA片段的细菌增多。通过分子杂交的方法,可以筛选出包含有所需基因的DNA片段的细菌(或噬菌体)。经过扩增得到大量这样的细菌(或噬菌体),从中便可分离出所需基因的DNA片段。建立和使用基因文库是分离高等真核生物基因的有效手段,对于基因定位和基因工程的研究都很有用。步骤二:基因表达载体的构建 1)用一定的限制酶切割质粒,使其出现一个切口,露出黏性末端。
2)用同一种限制酶切断目的基因,使其产生相同的黏性末端。
3)将切下的目的基因片段插入质粒的切口处,再加入适量DNA连接酶,形成了一个重组DNA分子(重组质粒) 目的基因与运载体的结合过程,实际上是不同来源的基因重组的过程。常用的受体细胞: 有大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌和动植物细胞等。将目的基因导入受体细胞的原理借鉴细菌或病毒侵染细胞的途径。步骤三:目的基因导入受体细胞①直接导入法有电击、显微注射、直接吸收、基因枪等方法。
(1)电击法:借助电击仪高压脉冲把目的基因打入宿主细胞。
(2)显微注射法:利用微量注射器在显微镜下直接把目的基因注入宿主细胞。
(3)直接吸收法:把目的基因和宿主细胞混在一起,让其吸收。
(4)基因枪法:在金属微粒上涂一层目的基因,然后发射到宿主细胞中。
②间接导入法常用的载体是质粒、λ噬菌体、科斯质粒。
(1)质粒是细菌染色体DNA以外的环状双链DNA分子,它能自我复制,也可整合到细胞染色体DNA中与其一起表达。质粒通常还含有标记基因,这可以从细胞的表型特征来识别。
(2)λ噬菌体是一种细菌病毒,其环状双链DNA可以作为目的基因的载体。
(3)科斯质粒是一种杂种质粒,含有质粒和λ噬菌体的部分顺序,很适合用作真核生物基因的载体。1.将目的基因导入植物细胞2.将目的基因导入动物细胞3.将目的基因导入微生物细胞 大肠杆菌细胞最常用的转化方法是:
首先用Ca2+ 处理细胞,以增大细菌细胞壁的通透性,使细胞处于一种能吸收周围环境中DNA分子的生理状态,这种细胞称为感受态细胞.
第二步是将重组表达载体DNA分子溶于缓冲液中与感受态细胞混合,在一定的温度下促进感受态细胞吸收DNA分子,完成转化过程.
第二步目的基因在受体细胞内,随其繁殖而复制,由于细菌繁殖的速度非常快,在很短的时间内就能获得大量的目的基因。 1)将细菌用CaCl2处理,以增大细菌细胞壁的通透性。
2)使含有目的基因的重组质粒进入受体细胞。
3)目的基因在受体细胞内,随其繁殖而复制,由于细菌繁殖的速度非常快,在很短的时间内就能获得大量的目的基因。步骤四:目的基因的检测与鉴定 不能,受体细胞必须表现出特定的性状,才能说明目的基因完成了表达。受体细胞摄入DNA分子后就说明目的基因完成了表达吗?若不能表达,要对抗虫基因再进行修饰。  前三步的处理十分繁锁,为保证目的基因得到有效利用,通常用大量的受体细胞来接受不多的目的基因。这样,处理的受体细胞中真正摄入了目的基因的很少,必须将它从中检测出来。  细菌的检测,将每个受体细胞单独培养形成菌落,检测菌落中是否有目的基因的表达产物。淘汰无表达产物的菌落,保留有表达产物的进一步培养、研究。  多细胞生物的检测,将每个受体细胞单独培养并诱导发育成完整个体,检测这些个体是否摄入目的基因,摄入的基因是否表达(是否表现出相应的性状)。淘汰无变化的个体,保留有相应变化的个体进一步培养、研究。  例:用棉铃饲喂棉铃虫,如虫吃后不出现中毒症状,说明未摄入目的基因或摄入目的基因未表达。如虫吃后中毒死亡,则说明摄入了抗虫基因并得到表达。1)以下说法正确的是 ( )
A、所有的限制酶只能识别一种特定的核苷酸序列
B、质粒是基因工程中唯一的运载体
C、运载体必须具备的条件之一是:具有多个限制酶切点,以便与外源基因连接
D、基因控制的性状都能在后代表现出来C练习2)不属于质粒被选为基因运载体的理由是
A、能复制 ( )
B、有多个限制酶切点
C、具有标记基因
D、它是环状DNAD练习3)有关基因工程的叙述中,错误的是( )
A、DNA连接酶将黏性末端的碱基对连接起来
B、 限制性内切酶用于目的基因的获得
C、目的基因须由运载体导入受体细胞
D、 人工合成目的基因不用限制性内切酶A练习4)有关基因工程的叙述正确的是 ( )
A、限制酶只在获得目的基因时才用
B、重组质粒的形成在细胞内完成
C、质粒都可作为运载体
D、蛋白质的结构可为合成目的基因提供资料D练习5)基因工程是在DNA分子水平上进行设计施工的。在基因操作的基本步骤中,不进行碱基互补配对的步骤是 ( )
A、人工合成目的基因
B、目的基因与运载体结合
C、将目的基因导入受体细胞
D、目的基因的检测和表达C练习课件28张PPT。基因工程的应用专题1基因工程一、植物基因工程硕果累累转基因工程技术主要用于提高浓作物的抗逆能力,以及改良弄作物的品质和利用植物生产药物等方面.1.抗虫转基因植物2.抗病转基因植物3.其他抗逆转基因植物4.利用转基因改良植物的品质1)高产、稳产和具优良品质的品种
用基因工程的方法可以改善粮食作物的蛋白质含量。如“向日葵豆”植株。
2)抗逆性品种
将细菌的抗虫、抗病毒、抗除草剂、抗盐碱、抗干旱、抗高温等抗性基因转移到作物体内,将从根本上改变作物的特性。如转基因抗虫棉。 基因工程在农业上的应用:1)高产、稳产和具优良品质的品种
用基因工程的方法可以改善粮食作物的蛋白质含量。如“向日葵豆”植株。
2)抗逆性品种
将细菌的抗虫、抗病毒、抗除草剂、抗盐碱、抗干旱、抗高温等抗性基因转移到作物体内,将从根本上改变作物的特性。如转基因抗虫棉。 繁殖具有抗病能力、高产仔率、高产奶率和高质量的皮毛等优良品质的转基因动物。
该过程的重要步骤是通过感染或显微注射技术将重组DNA转移到动物受精卵中。基因工程在畜牧养殖业上的应用主要是什么? 将人的生长激素基因和牛的生长素基因分别注射到小白鼠受精卵中,得到的“超级小鼠”。 二、动物基因工程前景广阔1.用于提高动物生长速度2.用于改善畜产品的品质3.用转基因的动物生产药物4.用转基因的动物作器官移植的供体5.基因工程药品异军突起在传统的药品生产中,某些药品如胰岛素、干扰素直接生物体的哪些结构中提取?药品直接从生物的组织、细胞或血液中提取。传统生产方法的缺点由于受原料来源的限制,价格十分昂贵。可利用什么方法来解决上述问题? 利用基因工程方法制造“工程菌”,可高效率地生产出各种高质量、低成本的药品。 胰岛素是治疗糖尿病的特效药。一般临床上使用的胰岛素主要从猪、牛等家畜的胰腺中提取,每100kg胰腺只能提取4~5g胰岛素。用该方法生产的胰岛素产量低,价格昂贵,远不能满足社会需要。1979年,科学家将动物体内的胰岛素基因与大肠杆菌DNA分子重组,并在大肠杆菌内实现了表达。1982年,美国一家基因公司用基因工程方法生产的胰岛素投入市场,售价降低了30%~50%。 基因工程药品 —— 胰岛素 干扰素是病毒侵入细胞后产生的一种糖蛋白。干扰素几乎能抵抗所有病毒引起的感染,是一种抗病毒的特效药。此外干扰素对治疗某些癌症和白血病也有一定疗效。
传统的干扰素生产方法是从人血液中的白细胞内提取,每300L血液只能提取出1mg干扰素。1980~1982年,科学家用基因工程方法在大肠杆菌及酵母菌细胞内获得了干扰素,是传统的生产量的12万倍。1987年上述干扰素大量投放市场。 基因工程药品 —— 干扰素 治疗侏儒症的唯一方法,是向人体注射生长激素。而生长激素的获得很困难。以前,要获得生长激素,需解剖尸体,从大脑的底部摘取垂体,并从中提取生长激素。
现可利用基因工程方法,将人的生长激素基因导入大肠杆菌中,使其生产生长激素。人们从 450 L大肠杆菌培养液中提取的生长激素,相当于6万具尸体的全部产量。 基因工程药品 —— 生长激素转基因动物的乳腺。就基因药物而言,最理想的表达场所是哪里? 是指把人或哺乳动物的某种基因导入到哺乳动物(如鼠、兔、羊和猪)的受精卵里,目的基因若与受精卵染色体DNA整合,细胞分裂时,该基因随染色体的倍增而倍增,使每个细胞中都带有目的基因,使性状得以表达,并稳定地遗传给后代,从而获得基因产品。这样一种新的个体,称为转基因动物。 什么叫转基因动物? 1)乳腺是一个外分泌器官,乳汁不进入体内循环,不会影响转基因动物本身的生理代谢反应。
2)从乳汁中获取目的基因产物,产量高,易提纯,表达的蛋白质已经过充分的修饰加工,具有稳定的生物活性。
3)从乳汁中源源不断获得目的基因的产物的同时,转基因动物又可无限繁殖。为什么乳腺能成为基因药物最理想的表达场所呢?基因诊断: 也称为DNA诊断或基因探针技术,即在DNA水平分析检测某一基因,从而对特定的疾病进行诊断。
探针制备:放射性同位素(如32P)、荧光分子等标记的DNA分子;
原 理:利用DNA分子杂交原理;三、基因治疗曙光初照基因探针: 基因探针就是一段与目的基因或DNA互补的特异核苷酸序列。它包括整个基因,或基因的一部分;可以是DNA本身,也可以是由之转录而来的RNA。DNA分子杂交原理: DNA分子杂交是基因诊断最基本的方法之一。其基本原理是:互补的DNA单链能够在一定条件下结合成双链,即能够进行杂交。这种结合是特异的,即严格按照碱基互补配对进行。因此,当用一段已知基因的核苷酸序列作为探针,与被测基因进行接触,若两者的碱基完全配对成双链,则表明被测基因中含有已知的基因序列。基因诊断技术在什么方面发展迅速? 在诊断遗传性疾病方面发展迅速。目前已经可以对几十种遗传病进行产前诊断。 1)β—珠蛋白的DNA探针 → 镰刀状细胞贫血症
2)苯丙氨酸羧化酶基因探针 → 苯丙酮尿症
3)白血病患者细胞中分离出的癌基因制备的DNA探针 → 白血病举例基因治疗: 是指是把健康的外源基因导入有基因缺陷的细胞中,达到治疗疾病的目的。 患半乳糖血症的患者,由于细胞内半乳糖苷转移酶基因缺陷而缺少半乳糖苷转移酶,使过多的半乳糖在体内积聚,引起肝、脑等功能受损。
1971年,美国科学家在体外做了试验,用带有半乳糖苷转移酶基因的噬菌体侵染患者的离体组织细胞,结果发现这些组织细胞能够利用半乳糖了。这表明,用基因替换的方法治疗这种遗传病是可能的。 用口径为1μm的DNA注射器,将大量的目的基因片段注入到受精卵的核内,然后把经过注射的受精卵移植到另一只雌性动物的子宫内,使受精卵发育为转基因动物。什么叫显微注射技术?基因工程与食品业基因工程为人类开辟新的食物来源。
1)鸡蛋白基因在大肠杆菌和酵母菌中表达获得成功。这表明,未来能用发酵罐培养的大肠杆菌或酵母菌来生产人类所需要的卵清蛋白。
2)用基因工程的方法从微生物中获得人们所需要的糖类、脂肪和维生素等产品。基因工程为食品工业中提供了什么前景?基因工程与环境保护1)用于环境监测。
2)用于被污染环境的净化。基因工程在环保方面有什么应用? 例如:用DNA探针可以检测饮用水中病毒的含量。此方法的特点是快速、灵敏,1吨水中有10个病毒也能检测出来。 通过基因工程方法怎样进行环境监测? 1)用基因工程产物——“超级细菌”分解石油,可以大大提高细菌分解石油的效率。具体方法:将能分解三种烃类的假单孢杆菌的基因都转移到能分解另一种烃类的假单孢杆菌内,创造出了能同时分解四种烃类的“超级细菌”。
2)用基因工程培养出“吞噬”汞和降解土壤中DDT的细菌,以及能够净化镉污染的植物。
3)通过基因重组构建新的杀虫剂,取代生产过程中耗能多、易造成环境污染的农药,并试图通过基因工程回收和利用工业废物。 通过基因工程方法怎样净化被污染的环境?(二)基因操作的工具课件15张PPT。蛋白质工程的崛起一、蛋白质工程崛起的缘由 通过基因工程能够大规模生产生物体内微量存在的活性物质,并借助转基因而改变动植物性状,得以在人类医疗保健中进行基因诊断和基因治疗。然而在广泛利用自然界各种蛋白质的过程中就发现,这些蛋白质只是适应生物自身的需要,而对它们进行产业化开发往往不合意,需要加以改造。1983年Ulmer首先提出蛋白质工程,它是指按照特定的需要,对蛋白质进行分子设计和改造的工程。自此以后,蛋白质工程迅速发展,已成为生物工程的重要组成部分。
  在已研究过的几千种酶中,只有极少数可以应用于工业生产,绝大多数酶都不能应用于工业生产,这些酶虽然在自然状态下有活性,但在工业生产中没有活性或活性很低。这是因为工业生产中每一步的反应体系中常常会有酸、碱或有机溶剂存在,反应温度较高,在这种条件下,大多数酶会很快变性失活。提高蛋白质的稳定性是工业生产中一个非常重要的课题。一般来说,提高蛋白质的稳定性包括:延长酶的半衰期,提高酶的热稳定性,延长药用蛋白的保存期,抵御由于重要氨基酸氧化引起的活性丧失等。例如:干扰素是一种抗病毒、抗肿瘤的药物。将人的干扰素的cDNA在大肠杆菌中进行表达,产生的干扰素的抗病毒活性为106 U/mg,只相当于天然产品的十分之一,虽然在大肠杆菌中合成的β-干扰素量很多,但多数是以无活性的二聚体形式存在。为什么会这样?如何改变这种状况?研究发现,β-干扰素蛋白质中有3个半胱氨酸(第17位、31位和141位),推测可能是有一个或几个半胱氨酸形成了不正确的二硫键。研究人员将第17位的半胱氨酸,通过基因定点突变改变成丝氨酸,结果使大肠杆菌中生产的β-干扰素的抗病性活性提高到108 U/mg,并且比天然β-干扰素的贮存稳定性高很多。“后基因组时代”将是“蛋白质组学时代”,即从对基因信息的研究转向对蛋白质信息的研究,包括研究蛋白质结构、功能与应用及蛋白质相互关系和作用。
蛋白质工程就是在对蛋白质的化学、晶体学、动力学等结构与功能认识的基础上,对蛋白质人工改造与合成,最终获得商业化的产品。二、蛋白质工程的基本原理蛋白质工程的主要步骤通常包括:
(1)从生物体中分离纯化目的蛋白;
(2)测定其氨基酸序列;
(3)借助核磁共振和X射线晶体衍射等手段,尽可能地了解蛋白质的二维重组和三维晶体结构;(4)设计各种处理条件,了解蛋白质的结构变化,包括折叠与去折叠等对其活性与功能的影响;
(5)设计编码该蛋白的基因改造方案,如点突变;
(6)分离、纯化新蛋白,功能检测后投入实际使用。(一)蛋白质的分子设计与改造
蛋白质工程首先是以蛋白质的结构为基础,通过蛋白质的一级结构、晶体结构和溶液构象的研究,积累了成千上万蛋白质一级结构和高级结构的数据资料,并编制成系统的数据库,得以从中找出蛋白质分子间的进化关系、一级结构和高级结构的关系、结构与功能的关系方面的规律。 蛋白质作为生物大分子是生物化学和分子生物学的研究重点,大量蛋白质被分离纯化,测定了它们的结构、性质和生物学作用。分子生物学有关基因组的研究,也可以用以推测出一些未知蛋白质的结构与功能。采用定位诱变的方法,可以对编码蛋白质的基因进行核苷酸密码子的插入、删除、置换和改组,其结果为分子改造提供新的设计方案。现有的蛋白质是生物长期进化的结果,蛋白质工程则是对生物进化的模拟,按照蛋白质形成的规律,改造蛋白质或构建新的蛋白质。
蛋白质的改造通常需要先经周密的分子设计,然后依赖基因工程获得突变型蛋白质,以检验其是否达到了预期的效果。如果改造的结果不理想,还需要从新设计再进行改造,往往经历多次实践摸索才能达到改进蛋白质性能的预定目标。(二)蛋白质改造工程举例
1.水蛭素改造
水蛭素是水蛭唾液腺分泌的凝血酶特异抑制剂,它有多种变异体,由65或66个氨基酸残基组成。水蛭素在临床上可作为抗栓药物用于治疗血栓疾病。为提高水蛭素活性,在综合各变异体结构特点的基础上提出改造水蛭素主要变异体HV2的设计方案,将47位的Asn(天冬酰胺)变成Lys(赖氨酸),使其与分子内第4或第5位Thr(苏氨酸)间形成氢键来帮助水蛭素N端肽段的正确取向,从而提高凝血效率,试管试验活性提高4倍,在动物模型上检验抗血栓形成的效果,提高20倍。2.生长激素改造
生长激素通过对它特异受体的作用促进细胞和机体的生长发育,然而它不仅可以结合生长激素受体,还可以结合许多种不同类型细胞的催乳激素受体,引发其他生理过程。在治疗过程中为减少副作用,需使人的重组生长激素只与生长激素受体结合,尽可能减少与其他激素受体的结合。经研究发现,二者受体结合区有一部分重叠,但并不完全相同,有可能通过改造加以区别。由于人的生长激素和催乳激素受体结合需要锌离子参与作用,而它与生长激素受体结合则无需锌离子参与,于是考虑取代充当锌离子配基的氨基酸侧链,如第18和第21位His(组氨酸)和第17位Glu(谷氨酸)。实验结果与预先设想一致,但要开发作为临床用药还有大量的工作要做。3.胰岛素改造
 
天然胰岛素制剂在储存中易形成二聚体和六聚体,延缓胰岛素从注射部位进入血液,从而延缓了其降血糖作用,也增加了抗原性,这是胰岛素B23-B28氨基酸残基结构所致。利用蛋白质工程技术改变这些残基,则可降低其聚合作用,使胰岛素快速起作用。该速效胰岛素已通过临床实验。
 4.治癌酶的改造
癌症的基因治疗分二个方面:药物作用于癌细胞,特异性地抑制或杀死癌细胞;药物保护正常细胞免受化学药物的侵害,可以提高化学治疗的剂量。疱疹病毒(HSV)胸腺嘧啶激酶(TK)可以催化胸腺嘧啶和其它结构类似物磷酸化而使这些碱基3’-OH缺乏,从而阻断DNA的合成,杀死癌细胞。HSV—TK催化能力可以通过基因突变来提高。从大量的随机突变中进行筛选出一种酶,在酶活性部位附近有6个氨基酸被替换,催化能力20倍以上。
蛋白质工程的发展很快,研究工作很多,以上仅介绍了几个例子。蛋白质工程除了用于改造天然蛋白质或设计制造新的蛋白质外,其本身还是研究蛋白质结构功能的一种强有力的工具,它在解决生物理论方面所起的作用,可以和任何重大的生物研究方法相提并论。何谓蛋白质工程?  在现代生物技术中,蛋白质工程出现得最晚,是在20世纪80年代初期出现的。1983年 “蛋白质工程”这个名词出现后,随即被广泛接受和采用。蛋白质工程是指以蛋白质分子的结构规律及其与生物功能的关系作为基础,通过基因修饰或基因合成,对现有蛋白质进行改造,或制造一种新的蛋白质,以满足人类的生产和生活的需求。 三、蛋白质工程的进展和前景 蛋白质工程汇集了当代分子生物学等学科的一些前沿领域的最新成就,它把核酸与蛋白质结合、蛋白质空间结构与生物功能结合起来研究。蛋白质工程将蛋白质与酶的研究推进到崭新的时代,为蛋白质和酶在工业、农业和医药方面的应用开拓了诱人的前景。蛋白质工程开创了按照人类意愿改造、创造符合人类需要的蛋白质的新时期。课件11张PPT。基因工程的成果与发展前景 基因工程与医药卫生生产基因工程药品用于基因诊断与基因治疗 基因工程与农牧业、食品工业培育高产、稳产和具有优良品质的动植物新品种培育具有各种抗逆性的动植物新品种为人类开辟新的食物来源基因工程与环境保护用于环境监测用于被污染环境的净化基因工程与医药卫生我国生产的部分基因 工程疫苗和药物1、基因工程药品的生产 微生物生长迅速,容易控制,适于大规模工业化生产。如利用大肠杆菌生产胰岛素、干扰素、白细胞介素—2等。既增加产量,又降低成本。基因工程与医药卫生2、基因诊断基因诊断是用放射性同位素(如32P)、荧光分子等标记的DNA分子做探针,利用DNA分子杂交原理,鉴定被检测标本上的遗传信息,达到检测疾病的目的。生物芯片
从正常人的基因组中分离出DNA与DNA芯片杂交就可以得出标准图谱。从病人的基因组中分离出DNA与DNA芯片杂交就可以得出病变图谱。
通过比较、分析这两种图谱,就可以得出病变的DNA信息。
基因芯片诊断技术以其快速、高效、敏感、经济、平行化、自动化等特点,将成为一项现代化诊断新技术。 基因工程与医药卫生3、基因治疗基因治疗是把健康的外源基因导入有基因缺陷的细胞中,达到治疗疾病的目的。 基因工程与农牧业、食品工业生长快、肉质好的转基因鱼(中国)乳汁中含有人生长激素的转基因牛(阿根廷)基因工程与农牧业、食品工业转黄瓜抗青枯病基因的甜椒转鱼抗寒基因的番茄基因工程与农牧业、食品工业基因工程与农牧业、食品工业基因工程与农牧业、食品工业基因工程与环境保护1、环境监测
基因工程做成的DNA探针能够十分灵敏地检测环境中的病毒、细菌等污染。
利用基因工程培育的“指示生物”能十分灵敏地反映环境污染的情况,却不易因环境污染而大量死亡,甚至还可以吸收和转化污染物。2、环境污染治理
  基因工程做成的“超级细菌”能吞食和分解多种污染环境的物质。1、有些转基因食物含的一些物质,可能会影响人体健康。
2、大量的转基因生物进入自然界后很可能会与野生物种进行杂交,产生一些超级生物,从而造成基因污染。
3、如有些作物插入抗虫基因,杀死环境中有益的生物。基因工程的弊端