2020年青岛新版上册数学八年级《第5章 几何证明初步》单元测试卷
一.选择题(共10小题)
1.下列说法正确的个数有( )
①同位角相等 ②过一点有且只有一条直线与已知直线垂直
③过一点有且只有一条直线与已知直线平行 ④若a∥b,b∥c,则a∥c.
A.1个 B.2个 C.3个 D.4个
2.在下列图形中,由条件∠1+∠2=180°,不能得到AB∥CD的是( )
A.
B.
C.
D.
3.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是( )
A.28° B.34° C.46° D.56°
4.下列说法:(1)两直线平行,同旁内角互补;(2)同位角相等,两直线平行;(3)内错角相等,两直线平行;(4)垂直于同一条直线的两条直线平行,其中平行线的性质是( )
A.(1) B.(2)(3) C.(4) D.(1)(4)
5.一副三角板按如图所示方式叠放在一起,则图中∠α等于( )
A.105° B.115° C.120° D.135°
6.如图,已知点P为△ABC三条内角平分线AD、BE、CF的交点,作DG⊥PC于G,则∠PDG等于( )
A.∠ABE B.∠DAC C.∠BCF D.∠CPE
7.如图,在平面直角坐标系中,直线AB与y轴在正半轴、x轴正半轴分别交A、B两点,M在BA的延长线上,PA平分∠MAO,PB平分∠ABO,则∠P的度数是( )
A.30° B.45° C.55° D.60°
8.如图,△ABC中,∠ACB=90°,D为AB上任一点,过D作AB的垂线,分别交边AC、BC的延长线于E、F两点,∠BAC、∠BFD的平分线交于点I,AI交DF于点M,FI交AC于点N,连接BI.下列结论:①∠BAC=∠BFD;②∠ENI=∠EMI;③AI⊥FI;④∠ABI=∠FBI;其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
9.下列命题属于真命题的是( )
A.同旁内角相等,两直线平行
B.相等的角是对顶角
C.平行于同一条直线的两条直线平行
D.同位角相等
10.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( )
A.甲 B.甲与丁 C.丙 D.丙与丁
二.填空题(共8小题)
11.经过直线外一点, 一条直线与这条直线平行.
12.如图,要得到AB∥CD,只需要添加一个条件,这个条件可以是 .(填一个你认为正确的条件即可)
13.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E= 度.
14.已知AD是△ABC的高,∠BAD=72°,∠CAD=21°,则∠BAC的度数是 .
15.如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠ACP=∠PBC,则∠BPC= .
16.在△ABC中,∠A=60°,∠B=2∠C,则∠B= °.
17.写出命题“直角三角形的两个锐角互余”的逆命题: .
18.A、B、C、D、E、F六足球队进行单循环比赛,当比赛到某一天时,统计出A、B、C、D、E、五队已分别比赛了5、4、3、2、1场球,则还没与B队比赛的球队是 .
三.解答题(共8小题)
19.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.
(1)求证:AB∥CD;
(2)试探究∠2与∠3的数量关系.
20.已知:如图,点C在∠AOB的一边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.
(1)若∠O=40°,求∠ECF的度数;
(2)求证:CG平分∠OCD;
(3)当∠O为多少度时,CD平分∠OCF,并说明理由.
21.如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H.问CD与AB有什么关系?并说明理由.
22.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= °;
(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间有何关系?
(3)若点P在Rt△ABC斜边BA的延长线上运动(CE<CD),则∠α、∠1、∠2之间有何关系?猜想并说明理由.
23.已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°;求∠AEC的度数.
24.图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系: ;
(2)仔细观察,在图2中“8字形”的个数: 个;
(3)图2中,当∠D=50度,∠B=40度时,求∠P的度数.
(4)图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结果,不必证明).
25.如图,在△ABD和△ACE中,有下列四个等式:①AB=AC=2②AD=AE=3 ③∠1=∠2=4④BD=CE.请你以其中三个等式作为题设,余下的作为结论,写出一个真命题(要求写出已知,求证及证明过程).
26.某班参加校运动会的19名运动员的运动服号码恰是1~19号,这些运动员随意地站成一个圆圈,则一定有顺次相邻的某3名运动员,他们运动服号码数之和不小于32,请你说明理由.
2020年青岛新版上册数学八年级《第5章 几何证明初步》单元测试卷
参考答案与试题解析
一.选择题(共10小题)
1.下列说法正确的个数有( )
①同位角相等 ②过一点有且只有一条直线与已知直线垂直
③过一点有且只有一条直线与已知直线平行 ④若a∥b,b∥c,则a∥c.
A.1个 B.2个 C.3个 D.4个
【分析】根据平行线的性质,垂线的性质和平行公理对各个说法分析判断后即可求解.
【解答】解:①如图,直线AB、CD被直线GH所截,∠AGH与∠CHF是同位角,但它们不相等,故说法错误;
②根据垂线的性质,应该加上前提:平面内,说法正错误;
③应为过直线外一点有且只有一条直线与已知直线平行,故说法错误;
④平行于同一直线的两条直线平行,是平行公理的推论,故说法正确.
综上所述,正确的说法是④共1个.
故选:A.
【点评】本题考查了平行线的性质,垂线的性质和平行公理,是基础知识,需要熟练掌握.熟练掌握各定理或推论成立的条件是解决此题的关键.
2.在下列图形中,由条件∠1+∠2=180°,不能得到AB∥CD的是( )
A.
B.
C.
D.
【分析】在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此判断即可.
【解答】解:A、∠1的对顶角与∠2的对顶角是同旁内角,它们互补,所以能判定AB∥CD;
B、∠1的对顶角与∠2是同旁内角,它们互补,所以能判定AB∥CD;
C、∠1的邻补角∠BAD=∠2,所以能判定AB∥CD;
D、由条件∠1+∠2=180°能得到AD∥BC,不能判定AB∥CD;
故选:D.
【点评】本题考查了平行线的判定,解题的关键是注意平行判定的前提条件必须是三线八角.
3.某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数是( )
A.28° B.34° C.46° D.56°
【分析】延长DC交AE于F,依据AB∥CD,∠BAE=87°,可得∠CFE=87°,再根据三角形外角性质,即可得到∠E=∠DCE﹣∠CFE.
【解答】解:如图,延长DC交AE于F,
∵AB∥CD,∠BAE=87°,
∴∠CFE=87°,
又∵∠DCE=121°,
∴∠E=∠DCE﹣∠CFE=121°﹣87°=34°,
故选:B.
【点评】本题主要考查了平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.
4.下列说法:(1)两直线平行,同旁内角互补;(2)同位角相等,两直线平行;(3)内错角相等,两直线平行;(4)垂直于同一条直线的两条直线平行,其中平行线的性质是( )
A.(1) B.(2)(3) C.(4) D.(1)(4)
【分析】题设是两直线平行,结论是角的关系;利用排除法求解.
【解答】解:(1)是性质;
(2)是平行线的判定;
(3)是平行线的判定;
(4)这是判断两直线平行的,不是平行线的性质;
所以只有(1)是性质;故选A.
【点评】本题主要考查平行线的性质与平行线的判定的区别,是需要熟记的内容.
5.一副三角板按如图所示方式叠放在一起,则图中∠α等于( )
A.105° B.115° C.120° D.135°
【分析】利用三角形内角和定理计算即可.
【解答】解:由三角形的内角和定理可知:α=180°﹣30°﹣45°=105°,
故选:A.
【点评】本题考查三角形内角和定理,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考基础题.
6.如图,已知点P为△ABC三条内角平分线AD、BE、CF的交点,作DG⊥PC于G,则∠PDG等于( )
A.∠ABE B.∠DAC C.∠BCF D.∠CPE
【分析】首先利用三角形的外角的意义得出∠PDC=∠BAC+∠ABC,由DG⊥PC,得出∠GDC=90°﹣∠ACB,而∠PDC=∠PDG+∠GDC,把∠PDG再进一步用∠BAC+∠ABC表示,整理得出结论即可.
【解答】解:∵AD、BE、CF是△ABC三条内角平分线,
∴∠ABE=∠ABC,∠BAD=∠BAC,∠GCD=∠ACB,
∵DG⊥PC,
∴∠DGC=90°,
∵∠PDC=∠BAD+∠ABC,∠PDC=∠PDG+∠GDC,
∴∠PDC=∠BAC+∠ABC,∠PDC=∠PDG+90°﹣∠BCF=∠PDG+90°﹣∠ACB=∠PDG+90°﹣(180°﹣∠BAC﹣∠ABC),
∴∠BAC+∠ABC=∠PDG+90°﹣(180°﹣∠BAC﹣∠ABC),
∴∠PDG=∠ABC=∠ABE.
故选:A.
【点评】此题考查角平分线的性质,垂线的性质,三角形的内角和与外角的意义等知识点,始终渗透等量代换.
7.如图,在平面直角坐标系中,直线AB与y轴在正半轴、x轴正半轴分别交A、B两点,M在BA的延长线上,PA平分∠MAO,PB平分∠ABO,则∠P的度数是( )
A.30° B.45° C.55° D.60°
【分析】由OA⊥OB即可得出∠OAB+∠ABO=90°、∠AOB=90°,再根据角平分线的定义以及三角形内角和定理即可求出∠P的度数.
【解答】解:∵OA⊥OB,
∴∠OAB+∠ABO=90°,∠AOB=90°.
∵PA平分∠MAO,
∴∠PAO=∠OAM=(180°﹣∠OAB).
∵PB平分∠ABO,
∴∠ABP=∠ABO,
∴∠P=180°﹣∠PAO﹣∠OAB﹣∠ABP=180°﹣(180°﹣∠OAB)﹣∠OAB﹣∠ABO=90°﹣(∠OAB+∠ABO)=45°.
故选:B.
【点评】本题考查了三角形内角和定理,解题的关键是找出∠P=90°﹣(∠OAB+∠ABO).本题属于基础题,难度不大,解决该题型题目时,熟练运用三角形内角和定理解决问题是关键
8.如图,△ABC中,∠ACB=90°,D为AB上任一点,过D作AB的垂线,分别交边AC、BC的延长线于E、F两点,∠BAC、∠BFD的平分线交于点I,AI交DF于点M,FI交AC于点N,连接BI.下列结论:①∠BAC=∠BFD;②∠ENI=∠EMI;③AI⊥FI;④∠ABI=∠FBI;其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
【分析】先根据∠ACB=90°可知∠DBF+∠BAC=90°,再由FD⊥AB可知∠BDF=90°,所以∠DBF+∠BFD=90°,通过等量代换即可得出∠BAC=∠BFD,故①正确;根据∠BAC=∠BFD,∠BAC、∠BFD的平分线交于点I可知∠EFN=∠EAM,再由对顶角相等可知∠FEN=∠AEM,根据三角形外角的性质即可判断出∠ENI=∠EMI,故②正确;由①知∠BAC=∠BFD,因为∠BAC、∠BFD的平分线交于点I,故∠MAD=∠MFI,再根据∠AMD=∠FMI可知,∠AIF=∠ADM=90°,即AI⊥FI,故③正确;因为BI不是∠B的平分线,所以∠ABI≠∠FBI,故④错误.
【解答】解:∵∠ACB=90°,
∴∠DBF+∠BAC=90°,
∵FD⊥AB,
∴∠BDF=90°,
∴∠DBF+∠BFD=90°,
∴∠BAC=∠BFD,故①正确;
∵∠BAC=∠BFD,∠BAC、∠BFD的平分线交于点I,
∴∠EFN=∠EAM,
∵∠FEN=∠AEM,
∴∠ENI=∠EMI,故②正确;
∵由①知∠BAC=∠BFD,∠BAC、∠BFD的平分线交于点I,
∴∠MAD=∠MFI,
∵∠AMD=∠FMI,
∴∠AIF=∠ADM=90°,即AI⊥FI,故③正确;
∵BI不是∠B的平分线,
∴∠ABI≠∠FBI,故④错误.
故选:C.
【点评】本题考查的是三角形内角和定理及三角形外角的性质,熟知三角形的内角和等于180°是解答此题的关键.
9.下列命题属于真命题的是( )
A.同旁内角相等,两直线平行
B.相等的角是对顶角
C.平行于同一条直线的两条直线平行
D.同位角相等
【分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.
【解答】解:A、同旁内角互补,两直线平行,是假命题;
B、相等的角不一定是对顶角,是假命题;
C、平行于同一条直线的两条直线平行,是真命题;
D、两直线平行,同位角相等,是假命题;
故选:C.
【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.
10.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分,某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( )
A.甲 B.甲与丁 C.丙 D.丙与丁
【分析】直接利用已知得出甲得分为7分,2胜1平,乙得分5分,1胜2平,丙得分3分,1胜0平,丁得分1分,0胜1平,进而得出答案.
【解答】解:∵甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,
∴甲得分为7分,2胜1平,乙得分5分,1胜2平,丙得分3分,1胜0平,丁得分1分,0胜1平,
∵甲、乙都没有输球,∴甲一定与乙平,
∵丙得分3分,1胜0平,乙得分5分,1胜2平,
∴与乙打平的球队是甲与丁.
故选:B.
【点评】此题主要考查了推理与论证,正确分析得出每队胜负场次是解题关键.
二.填空题(共8小题)
11.经过直线外一点, 有且只有 一条直线与这条直线平行.
【分析】根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行解答即可.
【解答】解:经过直线外一点,有且只有一条直线与这条直线平行.
故答案为:有且只有.
【点评】本题考查了平行公理,牢记平行公理:经过直线外一点,有且只有一条直线与这条直线平行是解题的关键.注意平行公理中“有且只有”的含义,从作图的角度说,它是“能但只能画出一条”的意思.
12.如图,要得到AB∥CD,只需要添加一个条件,这个条件可以是 ∠B=∠DCN(答案不惟一) .(填一个你认为正确的条件即可)
【分析】可以添加条件∠B=∠DCN (答案不惟一).由同位角相等,两直线平行,得出AB∥CD.
【解答】解:可以添加条件∠B=∠DCN (答案不惟一).理由如下:
∵∠B=∠DCN,
∴AB∥CD.
故答案为:∠B=∠DCN (答案不惟一).
【点评】考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.本题属于开放性试题,答案不唯一.
13.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E= 80 度.
【分析】设∠EPC=2x,∠EBA=2y,根据角平分线的性质得到∠CPF=∠EPF=x,∠EBF=∠FBA=y,根据外角的性质得到∠1=∠F+∠ABF=42°+y,∠2=∠EBA+∠E=2y+∠E,由平行线的性质得到∠1=∠CPF=x,∠2=∠EPC=2x,于是得到方程2y+∠E=2(42°+y),即可得到结论.
【解答】解:设∠EPC=2x,∠EBA=2y,
∵∠EBA、∠EPC的角平分线交于点F
∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,
∵∠1=∠F+∠ABF=40°+y,
∠2=∠EBA+∠E=2y+∠E,
∵AB∥CD,
∴∠1=∠CPF=x,∠2=∠EPC=2x,
∴∠2=2∠1,
∴2y+∠E=2(40°+y),
∴∠E=80°.
故答案为:80.
【点评】本题考查了平行线的性质以及三角形的外角的性质:三角形的外角等于两个不相邻的内角的和,正确设未知数是关键.
14.已知AD是△ABC的高,∠BAD=72°,∠CAD=21°,则∠BAC的度数是 51°或93° .
【分析】分高AD在△ABC内部和外部两种情况讨论求解即可.
【解答】解:①如图1,当高AD在△ABC的内部时,
∠BAC=∠BAD+∠CAD=72°+21°=93°;
②如图2,当高AD在△ABC的外部时,
∠BAC=∠BAD﹣∠CAD=72°﹣21°=51°,
综上所述,∠BAC的度数为51°或93°,
故答案为:51°或93°.
【点评】本题考查了三角形的高线,难点在于要分情况讨论.
15.如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠ACP=∠PBC,则∠BPC= 110° .
【分析】根据∠BAC=40°的条件,求出∠ACB+∠ABC的度数,再根据∠ACB=∠ABC,∠ACP=∠CBP,求出∠PBA=∠PCB,于是可求出∠ACP+∠ABP=∠PCB+∠PBC,然后根据三角形的内角和定理求出∠BPC的度数.
【解答】解:∵∠BAC=40°,
∴∠ACB+∠ABC=180°﹣40°=140°,
又∵∠ACB=∠ABC,∠ACP=∠CBP,
∴∠PBA=∠PCB,
∴∠ACP+∠ABP=∠PCB+∠PBC=140°×=70°,
∴∠BPC=180°﹣70°=110°.
故答案为110°.
【点评】此题考查了三角形的内角和定理,熟记三角形的内角和定理是解题的关键.
16.在△ABC中,∠A=60°,∠B=2∠C,则∠B= 80 °.
【分析】根据三角形的内角和定理和已知条件求得.
【解答】解:∵∠A=60°,
∴∠B+∠C=120°,
∵∠B=2∠C,
∴∠B=80°.
故答案为:80.
【点评】主要考查了三角形的内角和是180°.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.
17.写出命题“直角三角形的两个锐角互余”的逆命题: 两个锐角互余的三角形是直角三角形 .
【分析】把原命题的题设与结论部分交换即可得到其逆命题.
【解答】解:命题“直角三角形的两个锐角互余”的逆命题为“两个锐角互余的三角形是直角三角形”.
故答案为:两个锐角互余的三角形是直角三角形.
【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.
18.A、B、C、D、E、F六足球队进行单循环比赛,当比赛到某一天时,统计出A、B、C、D、E、五队已分别比赛了5、4、3、2、1场球,则还没与B队比赛的球队是 E .
【分析】由已知,通过A比了5场,E比了1场运用排除法得到没与B队比赛的球队.
【解答】解:A比了5场,
所以A与E比过,
又E只比了1场,
而B比了4场,
所以B与E没比过.
故答案为:E.
【点评】此题考查的知识点是推理与论证.此题解答的关键是由A比了5场一定与E比过,而E只比了1场得到答案.
三.解答题(共8小题)
19.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.
(1)求证:AB∥CD;
(2)试探究∠2与∠3的数量关系.
【分析】(1)已知BE、DE平分∠ABD、∠BDC,且∠1+∠2=90°,可得∠ABD+∠BDC=180°,根据同旁内角互补,可得两直线平行.
(2)已知∠1+∠2=90°,即∠BED=90°;那么∠3+∠FDE=90°,将等角代换,即可得出∠3与∠2的数量关系.
【解答】证明:(1)∵BE、DE平分∠ABD、∠BDC,
∴∠1=∠ABD,∠2=∠BDC;
∵∠1+∠2=90°,
∴∠ABD+∠BDC=180°;
∴AB∥CD;(同旁内角互补,两直线平行)
解:(2)∵DE平分∠BDC,
∴∠2=∠FDE;
∵∠1+∠2=90°,
∴∠BED=∠DEF=90°;
∴∠3+∠FDE=90°;
∴∠2+∠3=90°.
【点评】此题主要考查了角平分线的性质以及平行线的判定,难度不大.
20.已知:如图,点C在∠AOB的一边OA上,过点C的直线DE∥OB,CF平分∠ACD,CG⊥CF于C.
(1)若∠O=40°,求∠ECF的度数;
(2)求证:CG平分∠OCD;
(3)当∠O为多少度时,CD平分∠OCF,并说明理由.
【分析】(1)根据平行线的性质,得到∠ACE=40°,根据平角的定义以及角平分线的定义,即可得到∠ACF=70°,进而得出∠ECF的度数;
(2)根据∠DCG+∠DCF=90°,∠GCO+∠FCA=90°,以及∠ACF=∠DCF,运用等角的余角相等,即可得到∠GCO=∠GCD,即CG平分∠OCD;
(3)当∠O=60°时,根据平行线的性质,得出∠DCO=∠O=60°,再根据角平分线的定义,即可得到∠DCF=60°,据此可得∠DCO=∠DCF.
【解答】解:(1)∵DE∥OB,
∴∠O=∠ACE,(两直线平行,同位角相等)
∵∠O=40°,
∴∠ACE=40°,
∵∠ACD+∠ACE=180°,(平角定义)
∴∠ACD=140°,
又∵CF平分∠ACD,
∴∠ACF=70°,(角平分线定义)
∴∠ECF=70°+40°=110°;
(2)证明:∵CG⊥CF,
∴∠FCG=90°,
∴∠DCG+∠DCF=90°,
又∵∠AOC=180°,(平角定义)
∴∠GCO+∠FCA=90°,
∵∠ACF=∠DCF,
∴∠GCO=∠GCD,(等角的余角相等)
即CG平分∠OCD.
(3)结论:当∠O=60°时,CD平分∠OCF.
当∠O=60°时,
∵DE∥OB,
∴∠DCO=∠O=60°.
∴∠ACD=120°.
又∵CF平分∠ACD,
∴∠DCF=60°,
∴∠DCO=∠DCF,
即CD平分∠OCF.
【点评】本题主要考查了平行线的性质以及角平分线的定义,解题时注意:两直线平行,同位角相等,内错角相等.
21.如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H.问CD与AB有什么关系?并说明理由.
【分析】根据同位角相等,两直线平行可得DE∥BC,再根据两直线平行,内错角相等可得∠2=∠4,然后求出∠3=∠4,再根据同位角相等,两直线平行判断出CD∥FH,然后求解即可.
【解答】解:∵∠1=∠ACB,
∴DE∥BC,
∴∠2=∠4,
∵∠2=∠3,
∴∠3=∠4,
∴CD∥FH,
∵FH⊥AB,
∴CD⊥AB.
【点评】本题考查了平行线的判定与性质,熟记性质并准确识图理清图中各角度之间的关系是解题的关键.
22.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= 140 °;
(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间有何关系?
(3)若点P在Rt△ABC斜边BA的延长线上运动(CE<CD),则∠α、∠1、∠2之间有何关系?猜想并说明理由.
【分析】(1)连接PC,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,再表示出∠1+∠2即可;
(2)方法与(1)相同;
(3)根据点P的位置,分D、E、P三点共线前、后和三点共线时三种情况,利用三角形的一个外角等于与它不相邻的两个内角的和讨论求解.
【解答】解:(1)如图,连接PC,
由三角形的外角性质,∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,
∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠DPE+∠C,
∵∠DPE=∠α=50°,∠C=90°,
∴∠1+∠2=50°+90°=140°,
故答案为:140°;
(2)连接PC,
由三角形的外角性质,∠1=∠PCD+∠CPD,∠2=∠PCE+∠CPE,
∴∠1+∠2=∠PCD+∠CPD+∠PCE+∠CPE=∠DPE+∠C,
∵∠C=90°,∠DPE=∠α,
∴∠1+∠2=90°+∠α;
(3)如图1,由三角形的外角性质,∠2=∠C+∠1+∠α,
∴∠2﹣∠1=90°+∠α;
如图2,∠α=0°,∠2=∠1+90°;
如图3,∠2=∠1﹣∠α+∠C,
∴∠1﹣∠2=∠α﹣90°.
【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键,难点在于作辅助线构造出三角形,(3)难点在于要分情况讨论.
23.已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°;求∠AEC的度数.
【分析】根据直角三角形两锐角互余求出∠BAD,然后求出∠DAC,再根据角平分线的定义求出∠DAE,然后求出∠BAE,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠AEC=∠BAE+∠B代入数据计算即可得解.
【解答】解:∵AD⊥BC,∠B=60°,
∴∠BAD=90°﹣∠B=90°﹣60°=30°,
∵∠BAC=80°,
∴∠DAC=∠BAC﹣∠BAD=80°﹣30°=50°,
∵AE平分∠DAC,
∴∠DAE=∠DAC=×50°=25°,
∴∠BAE=30°+25°=55°,
∴∠AEC=∠BAE+∠B=55°+60°=115°.
【点评】本题考查了三角形的内角和定理,角平分线的定义,是基础题,熟记概念与定理并准确识图,理清图中各角度之间的关系是解题的关键.
24.图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:
(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系: ∠A+∠D=∠C+∠B ;
(2)仔细观察,在图2中“8字形”的个数: 6 个;
(3)图2中,当∠D=50度,∠B=40度时,求∠P的度数.
(4)图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系.(直接写出结果,不必证明).
【分析】(1)根据三角形内角和定理即可得出∠A+∠D=∠C+∠B;
(2)根据“8字形”的定义,仔细观察图形即可得出“8字形”共有6个;
(3)先根据“8字形”中的角的规律,可得∠DAP+∠D=∠P+∠DCP①,∠PCB+∠B=∠PAB+∠P②,再根据角平分线的定义,得出∠DAP=∠PAB,∠DCP=∠PCB,将①+②,可得2∠P=∠D+∠B,进而求出∠P的度数;
(4)同(3),根据“8字形”中的角的规律及角平分线的定义,即可得出2∠P=∠D+∠B.
【解答】解:(1)∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,∠AOD=∠BOC,
∴∠A+∠D=∠C+∠B;
(2)①线段AB、CD相交于点O,形成“8字形”;
②线段AN、CM相交于点O,形成“8字形”;
③线段AB、CP相交于点N,形成“8字形”;
④线段AB、CM相交于点O,形成“8字形”;
⑤线段AP、CD相交于点M,形成“8字形”;
⑥线段AN、CD相交于点O,形成“8字形”;
故“8字形”共有6个;
(3)∠DAP+∠D=∠P+∠DCP,①
∠PCB+∠B=∠PAB+∠P,②
∵∠DAB和∠BCD的平分线AP和CP相交于点P,
∴∠DAP=∠PAB,∠DCP=∠PCB,
①+②得:
∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠PAB+∠P,
即2∠P=∠D+∠B,
又∵∠D=50度,∠B=40度,
∴2∠P=50°+40°,
∴∠P=45°;
(4)关系:2∠P=∠D+∠B.
∠D+∠1=∠P+∠3①
∠B+∠4=∠P+∠2②
①+②得:
∠D+∠1+∠4+∠B=∠P+∠3+∠2+∠P,
∵∠DAB和∠DCB的平分线AP和CP相交于点P,
∴∠1=∠2,∠3=∠4
∴2∠P=∠D+∠B.
【点评】本题主要考查了三角形内角和定理,角平分线的定义及阅读理解与知识的迁移能力.(1)中根据三角形内角和定理得出“8字形”中的角的规律;(2)是考查学生的观察理解能力,需从复杂的图形中辨认出“8字形”;(3)(4)直接运用“8字形”中的角的规律解题.
25.如图,在△ABD和△ACE中,有下列四个等式:①AB=AC=2②AD=AE=3 ③∠1=∠2=4④BD=CE.请你以其中三个等式作为题设,余下的作为结论,写出一个真命题(要求写出已知,求证及证明过程).
【分析】根据三角形全等的判定方法进行组合、证明,答案不唯一.
【解答】解:答案不唯一.如:
已知:在△ABD和△ACE中,AB=AC,AD=AE,∠1=∠2.
求证:BD=CE.
证明:∵∠1=∠2,∴∠BAD=∠CAE.
在△ABD和△ACE中,
∵AB=AC,∠BAD=∠CAE,AD=AE,
∴△ABD≌△ACE.(SAS),
∴BD=CE.(全等三角形对应边相等).
【点评】此题考查全等三角形的判定和性质,熟练掌握判定方法是关键.
26.某班参加校运动会的19名运动员的运动服号码恰是1~19号,这些运动员随意地站成一个圆圈,则一定有顺次相邻的某3名运动员,他们运动服号码数之和不小于32,请你说明理由.
【分析】由已知,1~19号运动员随意地站成一个圆圈,求出6组有顺次相邻的某3名运动员的号码的和,从每组都小于等于31,得6组的和与计算出6组的和矛盾确定一定有顺次相邻的某三名运动员,他们运动服号码数之和不小于32.
【解答】解:设在圆周上按逆时针顺序以1号为起点记运动服号码数为a1,a2,a3,…,a18,a19,
显然a1=1,而a2,a3,…,a18,a19就是2,3,4,5,6,…,18,19的一个排列.
令A1=a2+a3+a4;
A2=a5+a6+a7;
A3=a8+a9+a10;
A4=a11+a12+a13;
A5=a14+a15+a16;
A6=a17+a18+a19;
则A1+A2+A3+A4+A5+A6;
=a2+a3+a4+…+a17+a18+a19;
=2+3+4+…+17+18+19;
=189(*).
如果A1,A2,A3,A4,A5,A6中每一个都≤31,则有A1+A2+A3+A4+A5+A6≤6×31=186,与(*)式矛盾.
所以A1,A2,A3,A4,A5,A6中至少有一个大于31.为确定起见,不妨就是A1>31,即a2+a3+a4>31,但a2+a3+a4是整数,
所以必有a2+a3+a4≥32成立.
所以,一定有顺次相邻的某三名运动员,他们运动服号码数之和不小于32.
【点评】此题考查的知识点是推理与论证,同时也考查了学生对问题灵活处理的综合能力.解题的关键是求出6组有顺次相邻的某3名运动员的号码的和,从每组都小于等于31,得6组的和与计算出6组的和矛盾确定一定有顺次相邻的某三名运动员,他们运动服号码数之和不小于32.