课题名称:《平行四边形性质》
年级学科 八年级数学 教材版本 北师大
一、教学内容分析(简要说明课题来源、学习内容、知识结构图以及学习内容的重要性)
四边形和三角形一样,也是基本的平面图形,在七年级下册“空间与图形”有关知识的基础上,探索并掌握四边形的基本性质,进一步学习说理和简单的推理,将为学生学习空间与图形的后继内容打下基础,本节将用多种手段(直观操作、图形的平移、旋转、说理及简单推理等)探索平行四边形的性质并培养学生的探索意识。
二、教学目标
1.经历探索平行四边形有关概念和性质的过程, 2.索并掌握平行四边形的性质,并能简单应用; 3.在探索活动过程中发展学生的探究意识。
三、学习者特征分析
学生知识技能基础:学生在小学已经学习过平行四边形,对平行四边形有直观的感知和认识。 学生活动经验基础:在掌握平行线和相交线有关几何事实的过程中,学生已经初步经历过观察、操作等活动过程,获得了一定的探索图形性质的活动经验;同时,在学习数学的过程中也经历了很多合作过程,具有了一定的学习经验,具备了一定的合作和交流能力。
四、教学过程
本节课分4个环节:第一环节:实践探索,直观感知;第二环节:探索归纳,交流合作 第三环节:应用巩固,深化提高;第四环节:概括总结,布置作业。第一环节:实践探索,直观感知1.小组活动一 内容: 问题1:同学们拿出准备好的两张全等的三角形纸片,将它们相等的一边重合,得到一个四边形。 (1)你拼出了怎样的四边形?与同桌交流一下; (2)给出拼出的平行四边形,它们的对边有怎样的位置关系?说说你的理由,请用简捷的语言刻画这个图形的特征。目的: 通过学生动手实践,引出平行四边形的概念:两组对边分别平行的四边形,叫做平行四边形; 平行四边形的相邻的两个顶点连成的一段叫做它的对角线。教师进一步强调:平行四边形定义中的两个条件:①四边形,②两边分别分别平行即AD // BC 且AB // BC;平行四边形的表示 “ DABC”。 2.小组活动二 内容:生活中常见到平行四边形的实例有什么呢?你能举例说明吗?目的:加强知识的直观体验,使学生感受数学来源于生活,数学图形和生活是紧密相联系的。 效果:通过动手实践、探索、感知,学生进一步探索了平行四边形的概念,明确了平行四边形的本质特征。第二环节 探索归纳、合作交流小组活动三:用一张练习纸复制你刚才画的平行四边形,并将复制后的四边形绕一个顶点旋转180°,你能平移该纸片,使它与你画的平行四边形重合吗?由此你能得到哪些结论?四边形的对边、对角分别有什么关系?能用别的方法验证你的结论吗? (1)让学生动手操作、复制、旋转、观察、分析; (2)学生交流、议论;活动目的:这个探索活动与第一环节的探索活动有所不同,是从整体的角度研究平行四边形对边、对角的特征,感受平行四边形的性质:平行四边形的对边相等,平行四边形的对角相等等。第四环节 应用巩固 深化提高1.活动四练1 如图:四边形ABCD是平行四边形。 (1)求∠ADC、∠BCD度数 (2)边AB、BC的度数、长度。 议一议:如果已知平行四边形的一个或几个内角的特点,能确定其它内角的度数吗?如: 1在. ABCD中,∠B=60,则∠A= ,∠C= ,∠D= 。如:2在 ABCD中,∠A:∠B = 7:2 ,则 ∠C = 如:3在 ABCD中,∠A - ∠B=20°,则∠C= 。 如 4在 □ ABCD中,若∠A+∠C=100°,则∠B= 。如 5 在 ABCD中,∠A∶∠B∶∠C∶∠D的值可能是( ) 1∶2∶3∶4 B、1∶2∶2∶1 C、2∶2∶1∶1 D、2∶1∶2∶1 练2:已知:平行四边形边的特点,能确定其它边吗?如 1.在 ABCD中,AB=3,BC=5,则AD= CD= 。如 2、在□ABCD中,若AB∶BC=2∶3且它的周长为30㎝,则CD= ㎝。如 3、 在 ABCD中,周长为40cm,△ABC周长为25,则对角线AC=( )cm。A.5cm B.15cm C.6cm D.16cm
五、教学板书