14.5 等腰三角形的性质 课件(19张PPT)+导学案(无答案)

文档属性

名称 14.5 等腰三角形的性质 课件(19张PPT)+导学案(无答案)
格式 zip
文件大小 948.5KB
资源类型 教案
版本资源 沪教版(五四学制)
科目 数学
更新时间 2020-01-09 17:35:56

文档简介

《14.5等腰三角形的性质》导学案
[学习目标]
温故等腰三角形的概念及各元素名称.
通过折叠、观察、操作等活动,发现并归纳猜想等腰三角形的性质.
经历用逻辑推理方法推导等腰三角形两个底角相等的性质,体会实验归纳和逻辑推理两种研究方法的联系与区别.
掌握等腰三角形两个底角相等 及“三线合一”的性质;能运用等腰三角形的性质解决有关的简单的几何问题.
[学习重点]
等腰三角形的性质及应用.
[学习内容和方法]
一.温故知新
等腰三角形定义:有 相等的三角形.
二. 操作探索
1.我们学过等腰三角形是 对称图形,如何折叠可以说明?
2.通过折叠等腰三角形,你发现了什么?如何证明?
三.性质归纳:
1.等腰三角形的 相等.
简称:
符号语言:∵ ( )
∴ ( )
2. 等腰三角形的 、 、 互相重合.
简称:
符号语言:
①∵AB=AC,AD是顶角∠BAC的平分线,
∴ ⊥ , = ( )
②∵AB=AC ,AD是底边BC上的中线,
∴ ⊥ , ∠ =∠
③∵AB=AC ,AD是底边BC上的高,
∴ = , ∠ =∠
四.初步应用:
抢答:
1、已知等腰三角形的一个底角是75°,则其余两角为__ _;
2、已知等腰三角形一个角是70°,则其余两角为______ ;
3、已知等腰三角形一个角是110°,则其余两角为__ ___.
例题分析:
例1.已知:如图,房屋的顶角∠BAC=100°,屋椽AB=AC,过屋顶A的柱子AD是BC边上的中线,
(1)求∠1和∠2的度数;
(2)AD⊥BC吗?为什么?
例2.已知:如图,在△ABC中,AB=AC,点E在BA的延长线上,AD∥BC,
(1)试说明AD平分∠EAC;
(2)若在边AC上取点F,使AE=AF,联结EF交AD于点G,
你能得到哪些结论?
五.学以致用:考古学家在古共工国墓中发现了大量玉器. 其中有一种刻叶脉纹的玉三角形饰,呈等腰三角形.现在有一同样刻叶脉纹的玉石残片,如果确定也是等腰三角形,你能用它仅有的底边和一个底角画出它原来的等腰三角形形状吗?
课件19张PPT。有两条边相等的三角形叫做等腰三角形. 等腰三角形中,相等的两边都叫做腰,另一边叫做底边.底边顶角底角底角概念两腰的夹角叫做顶角,两腰的对角都叫做底角.14.5 等腰三角形的性质ABCD猜想:1.等腰三角形的两个底角相等. 2.等腰三角形的顶角平分线、
底边上的中线、
底边上的高互相重合.解:
作底边BC上的中线AD,
∴BD=CD
在△ABD和在△ACD中
AB=AC
BD=CD
AD=AD
∴△ABD≌△ACD(SSS)
∴∠B=∠C
猜想:等腰三角形的两个底角相等. 已知:如图,在△ABC中,AB=AC, 试说明:∠B=∠C.ABCD等腰三角形性质1:
等腰三角形的两个底角相等.
简称:等边对等角温馨提示:
等边对等角的前提是在一个三角形中!解:作底边BC上的中线AD,
∴BD=CD
在△ABD和在△ACD中
AB=AC
BD=CD
AD=AD
∴△ABD≌△ACD(SSS)
∴∠B=∠C,
∠1=∠2, ∠BDA=∠CDA
∵∠BDA+∠CDA=180°
∴∠BDA=∠CDA=90°∴AD⊥BC
已知:如图,在△ABC中,AB=AC, 试说明:∠B=∠C.ABCD21ABCD等腰三角形性质2:
等腰三角形的顶角平分线、
底边上的中线、
底边上的高互相重合.
简称:等腰三角形三线合一在 ?ABC中,AB=AC ① ∠1 =∠2,② AD ⊥ BC,③ BD = CD
中已知任意一个都可以得其它两个条件.12BCDA等腰三角形是轴对称图形,
它的对称轴是顶角平分线所在直线,或底边上的中线所在直线,或底边上的高所在的直线. 抢答⒈等腰三角形一个底角为75°,它的另外两个
角为 ;
⒉等腰三角形一个角为70°,它的另外两个
角为 ;
⒊等腰三角形一个角为110°,它的另外两个
角为 .75° , 30°70°,40°或55°,55°35°,35°初步应用例1.已知:如图,房屋的顶角∠BAC=100°,屋椽AB=AC,过屋顶A的柱子AD是BC边上的中线, (1)求∠1和∠2的度数; (2)AD⊥BC吗?为什么?21初步应用例2.已知:如图,在△ABC中,AB=AC, 点E在BA的延长线上,AD∥BC, (1)求证:AD平分∠EAC; EABCF D (2)若在边AC上取点F,使AE=AF,
联结EF交AD于点G,
你能得到哪些结论? G初步应用21谈谈你的收获1.通过本节课学习,你学到了什么?
2.令你印象最深刻的是什么?考古学家在古共工国墓中发现了大量玉器.学以致用考古学家在古共工国墓中发现了大量玉器.学以致用考古学家在古共工国墓中发现了大量玉器.学以致用其中有一种刻叶脉纹的玉三角形饰,呈等腰三角形.现在有一同样刻叶脉纹的玉石残片,如果确定也是等腰三角形,你能用它仅有的底边和一个底角画出它原来的等腰三角形形状吗?学以致用回家作业(1)仔细阅读课本 14.5
(2)完成课后P107练习
(3)完成练习册P54-56 习题14.5 你能用它仅有的底边AB和一个底角∠B画出它原来的等腰三角形形状吗?ABCABC学以致用