【2020高分攻略】高考物理二轮复习学案 专题十二 电磁感应(原卷+解析卷)

文档属性

名称 【2020高分攻略】高考物理二轮复习学案 专题十二 电磁感应(原卷+解析卷)
格式 zip
文件大小 4.6MB
资源类型 试卷
版本资源 通用版
科目 物理
更新时间 2020-01-11 10:46:49

文档简介


专题十二 电磁感应(原卷版)
/
考点
要求
考点解读及预测
电磁感应现象

1.考查方式
高考对本章内容考查命题频率较高,以选择题和计算题形式出题,难度一般在中档或中档以下.
2.命题趋势
(1)楞次定律、右手定则、左手定则的应用.
(2)与图象结合考查电磁感应现象.
(3)通过“杆+导轨”模型,“线圈穿过有界磁场”模型,考查电磁感应与力学、电路、能量等知识的综合应用.
.感应电流的产生条件

法拉第电磁感应定律 楞次定律

自感 涡流

/
1.电磁问题方向判断“三定则、一定律”的应用
(1)安培定则:判断运动电荷、电流产生的磁场方向。
(2)左手定则:判断磁场对运动电荷、电流的作用力的方向。
(3)楞次定律:判断闭合电路磁通量发生变化产生的感应电流的磁场方向。
(4)右手定则:判断闭合电路中部分导体切割磁感线产生的感应电流的方向。
2.楞次定律推论的应用技巧
(1)“增反减同”;(2)“来拒去留”;(3)“增缩减扩”。
3.四种求电动势的方法
(1)平均电动势E=n。
(2)垂直切割E=BLv。
(3)导体棒绕与磁场平行的轴匀速转动E=Bl2ω。
(4)线圈绕与磁场垂直的轴匀速转动e=nBSωsinωt。
4.感应电荷量的两种求法
(1)当回路中的磁通量发生变化时,由于感应电场的作用使电荷发生定向移动而形成感应电流。通过的电荷量表达式为q=IΔt=n·Δt=n。
(2)导体切割磁感线运动通过的电荷量q满足的关系式:-BlΔt=-Blq=mΔv。
5.解决电磁感应图象问题的两种常用方法
(1)排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正负以及是否过某些特殊点,以排除错误的选项。
(2)函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图象进行分析和判断。
6.三步解决电磁感应中电路问题
(1)确定电源:E=n或E=Blv。
(2)分析电路结构:分析内、外电路,以及外电路的串并联关系,画出等效电路图。
(3)应用闭合电路欧姆定律及串并联电路的基本规律等列方程求解。
7.电磁感应中力、能量和动量综合问题的分析方法
(1)分析“受力”:分析研究对象的受力情况,特别关注安培力的方向。
(2)分析“能量”:搞清楚有哪些力做功,就可以知道有哪些形式的能量发生了变化,根据动能定理或能量守恒定律等列方程求解。
(3)分析“动量”:在电磁感应中可用动量定理求变力的作用时间、速度、位移和电荷量(一般应用于单杆切割磁感线运动)。
①求速度或电荷量:-BlΔt=mv2-mv1,q=Δt。
②求时间:FΔt+IA=mv2-mv1,IA=-BlΔt=-Bl。
③求位移:-BlΔt=-=mv2-mv1,即-x=m(v2-v1)。
/
一、电磁感应现象的理解和判断
常见的产生感应电流的三种情况
/
二、法拉第电磁感应定律的应用
1.求解感应电动势常见情况
情景图
/
/
/
/
研究对象
回路(不一定闭合)
一段直导线(或等效成直导线)
绕一端转动的一段导体棒
绕与B垂直的轴转动的导线框
表达式
E=n
E=BLv(L为有效长度)
E=BL2ω
E=NBSωcos ωt
2.决定感应电动势大小的因素
感应电动势E的大小决定于穿过电路的磁通量的变化率
和线圈的匝数n.而与磁通量的大小、磁通量变化量ΔΦ的大小
无必然联系.
3.磁通量变化通常有两种方式
(1)磁感应强度B不变,垂直于磁场的回路面积发生变化,此时E=n ;
(2)垂直于磁场的回路面积不变,磁感应强度发生变化,此时E=n,其中/是B-t图象的斜率.
三、通电自感与断电自感的比较
通电自感
断电自感
电路图
/
/
器材要求
A 1、A 2同规格,R=RL,L较大
L很大(有铁芯)
现象
在S闭合瞬间,A 2灯立即亮起来,A 1灯逐渐变亮,最终一样亮
在开关S断开时,灯A突然闪亮一下后再渐渐熄灭(当抽掉铁芯后,重做实验,断开开关S时,会看到灯A马上熄灭)
原因
由于开关闭合时,流过电感线圈的电流迅速增大,使线圈产生自感电动势,阻碍了电流的增大,流过A 1灯的电流比流过A 2灯的电流增加得慢
断开开关S时,流过线圈L的电流减小,产生自感电动势,阻碍了电流的减小,使电流继续存在一段时间;在S断开后,通过L的电流反向通过A灯,且由于R/L?R A,使得流过A灯的电流在开关断开瞬间突然增大,从而使A灯的发光功率突然变大
能量转
化情况
电能转化为磁场能
磁场能转化为电能
四、电磁感应中的电路问题
1.电磁感应中电路知识的关系图
/
2.分析电磁感应电路问题的基本思路
/
电磁感应的图象问题
1.题型特点
(1)由给定的电磁感应过程选出或画出正确的图象。
(2)由给定的有关图象分析电磁感应过程,求解相应的物理量。
(3)根据图象定量、定性计算。
2.电磁感应图象问题的解决方法
(1)明确图象的种类,即是B-t图象还是Φ-t图象,是E-t图象还是I-t图象等。
(2)分析电磁感应的具体过程。
(3)用右手定则或楞次定律确定方向对应关系。
(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式。
(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等。
(6)判断图象(或画图象或应用图象解决问题)。
六、电磁感应中的动力学问题
1.两种状态及处理方法
状态
特征
处理方法
平衡态
加速度为零
根据平衡条件列式分析
非平衡态
加速度不为零
根据牛顿第二定律进行动态分析或结合功能关系进行分析
2.力学对象和电学对象的相互关系
/
七、电磁感应中的能量问题
1.电能求解的三种主要思路
(1)利用克服安培力求解:电磁感应中产生的电能等于克服安培力所做的功。
(2)利用能量守恒或功能关系求解。
(3)利用电路特征来求解:通过电路中所产生的电能来计算。
2.解题的一般步骤
(1)确定研究对象(导体棒或回路)。
(2)弄清电磁感应过程中,哪些力做功,哪些形式的能量相互转化。
(3)根据能量守恒定律列式求解。
/
题型一、电磁感应现象的理解和判断
【典例1】.(2019·佛山高三质检)如图所示,一通电螺线管b放在闭合金属线圈a内,螺线管的中心轴线恰和线圈的一条直径MN重合.要使线圈a中产生感应电流,可采用的方法有(  )
/
A.使通电螺线管中的电流发生变化
B.使螺线管绕垂直于线圈平面且过线圈圆心的轴转动
C.使线圈a以MN为轴转动
D.使线圈绕垂直于MN的直径转动
【答案】D
【解析】在A、B、C三种情况下,穿过线圈a的磁通量始终为零,因此不产生感应电流,A、B、C错误;选项D中,当线圈绕垂直于MN的直径转动时,穿过线圈的磁通量发生变化,会产生感应电流,故D正确.
题型二、对楞次定律和右手定则的理解与应用
【典例2】.(2019·江苏扬州一模)航母上飞机弹射起飞是利用电磁驱动来实现的。电磁驱动原理如图所示,在固定线圈左右两侧对称位置放置两个闭合金属圆环,铝环和铜环的形状、大小相同,已知铜的电阻率较小,则合上开关S的瞬间(  )
/
A.两个金属环都向左运动
B.两个金属环都向右运动
C.铜环受到的安培力小于铝环受到的安培力
D.从左侧向右看,铝环中感应电流沿顺时针方向
【答案】 D
【解析】 合上开关S的瞬间,穿过两个金属环的磁通量变大,为阻碍磁通量的增大,铝环向左运动,铜环向右运动,A、B错误;由于铜环和铝环的形状、大小相同,铜的电阻率较小,故铜环的电阻较小,两环对称地放在固定线圈两侧,闭合S瞬间,穿过两环的磁通量的变化率相同,两环产生的感应电动势大小相同,铜环电阻较小,则铜环中的感应电流较大,故铜环受到的安培力较大,C错误;由右手螺旋定则可知,闭合S瞬间,穿过铝环的磁通量向左增大,由楞次定律知,从左侧向右看,铝环中感应电流沿顺时针方向,D正确。
题型三、 三定则、一定律的综合应用
【典例3】.(2019·贵州五校联考)如图所示,在匀强磁场中,放有一与线圈D相连接的平行导轨,要使放在线圈D中的线圈A(A、D两线圈同心共面)各处受到沿半径方向指向圆心的力,金属棒MN的运动情况可能是 (  )
/
A.匀速向右        B.加速向左
C.加速向右 D.减速向左
【答案】BC
【解析】若金属棒MN匀速向右运动,则线圈D与MN组成回路中的电流恒定,故穿过线圈A的磁通量不变,线圈A不受安培力作用,选项A错误;若金属棒MN加速向左运动,则线圈D与MN组成回路中的电流不断增强,故穿过线圈A的磁通量不断增强,根据楞次定律,为阻碍磁通量的增强,线圈A有收缩的趋势,受到沿半径方向指向圆心的安培力,选项B正确;同理可得,当金属棒MN加速向右运动时,线圈A有收缩的趋势,受到沿半径方向指向圆心的安培力,选项C正确;当金属棒MN减速向左运动时,线圈A有扩张的趋势,受到沿半径方向背离圆心的安培力,选项D错误.
题型四、法拉第电磁感应定律的应用
【典例4】.(2019·济南高三模拟)在如图甲所示的电路中,螺线管匝数n=1000匝,横截面积S=20 cm2,螺线管导线电阻r=1.0 Ω,R1=4.0 Ω,R2=5.0 Ω,C=30 μF。在一段时间内,垂直穿过螺线管的磁场的磁感应强度B的方向如图甲所示,大小按如图乙所示的规律变化,则下列说法中正确的是(  )
/
A.螺线管中产生的感应电动势为1.2 V
B.闭合S,电路中的电流稳定后,电容器下极板带负电
C.闭合S,电路中的电流稳定后,电阻R1的电功率为2.56×10-2 W
D.S断开后,流经R2的电量为1.8×10-2 C
【答案】 C
【解析】 根据法拉第电磁感应定律:E=n=nS,解得:E=0.8 V,A错误;根据楞次定律可知,螺线管的感应电流盘旋而下,则螺线管下端是电源的正极,电容器下极板带正电,B错误;根据闭合电路欧姆定律,有:I==0.08 A,根据P=I2R1得:电阻R1的电功率P=2.56×10-2 W,C正确;S断开后,流经R2的电量即为S闭合时电容器极板上所带的电量Q,电容器两极板间的电压为:U=IR2=0.4 V,流经R2的电量为:Q=CU=1.2×10-5 C,D错误
题型五 导体棒切割磁感线产生感应电动势
【典例5】.(2019·北京高考)如图所示,垂直于纸面的匀强磁场磁感应强度为B。纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行。从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求:
/
(1)感应电动势的大小E;
(2)拉力做功的功率P;
(3)ab边产生的焦耳热Q。
【答案】 (1)BLv (2) (3)
【解析】 (1)由法拉第电磁感应定律可得,感应电动势
E=BLv。
(2)线框中的感应电流I=
拉力大小等于安培力大小F=BIL
拉力的功率P=Fv=。
(3)线框ab边电阻Rab=
时间t=
ab边产生的焦耳热Q=I2Rabt=。
题型六 自感现象
【典例6】 (2019·江苏扬州高邮高三下学期调研)如图所示,两灯泡A1、A2相同,A1与一理想二极管D连接,线圈L的直流电阻不计。下列说法正确的是(  )
/
A.闭合开关S后,A1会逐渐变亮 B.闭合开关S稳定后,A1、A2亮度相同
C.断开S的瞬间,a点的电势比b点低 D.断开S的瞬间,A1会逐渐熄灭
【答案】 C
【解析】 闭合开关S后,虽然线圈产生自感电动势阻碍电流的增大,但两灯和线圈不是串联的关系,故两灯立刻变亮,A错误;闭合开关S稳定后,因线圈L的直流电阻不计,所以A1与二极管被短路,灯泡A1不亮,而A2亮,因此A1、A2亮度不同,B错误;断开S的瞬间,A2会立刻熄灭,因线圈产生感应电动势,故a点的电势低于b点,线圈L与灯泡A1及二极管构成回路,但二极管具有单向导电性,所以回路中没有感应电流,A1会立即熄灭,C正确,D错误。
题型七 电磁感应中的电路问题
【典例7】.(2019·济宁调研)如图甲所示,一个电阻值为R、匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路,线圈的半径为r1。在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示(规定图甲中B的方向为正方向)。图线与横、纵轴的截距分别为t0和B0,导线的电阻不计。求0~t1时间内:
/
(1)通过电阻R1的电流大小和方向;
(2)通过电阻R1的电荷量q及电阻R1上产生的热量。
【答案】 (1) 由b到a (2) 
【解析】 (1)根据楞次定律可知,通过R1的电流方向为由b到a。根据法拉第电磁感应定律得,线圈中的电动势
E=n=
根据闭合电路欧姆定律得,通过R1的电流
I==。
(2)通过R1的电荷量q=It1=
R1上产生的热量Q=I2R1t1=。
题型八 电磁感应的图象问题
【典例8】.(2019·山东泰安检测)矩形线框abcd固定放在匀强磁场中,磁场方向与线圈平面垂直,磁感应强度B随时间t变化的图象如图甲所示.设t=0时刻,磁感应强度的方向垂直纸面向里,图乙中i表示线圈中感应电流的大小(规定电流沿顺时针方向为正),F表示线框ab边所受的安培力的大小(规定ab边中所受的安培力方向向左为正),则下列图象中可能正确的是 (  )
/
/ /
【答案】AC
【解析】在0~2 s内,磁感应强度均匀变化,线框的磁通量均匀变化,产生恒定电流.磁场方向先向里后向外,磁通量先减小后增大,由楞次定律可知,感应电流方向为顺时针方向,电流为正值.根据法拉第电磁感应定律得:E=S,该段时间内恒定,则感应电动势恒定,由I=可知感应电流也一定.同理得知,在2~4 s内,感应电流方向为逆时针方向,电流为负值,感应电流也一定,故A正确,B错误;在0~2 s内,线框ab边所受的安培力的大小为F=BIL,IL一定,F与B成正比,而由楞次定律判断可知,安培力方向先向左后向右,即先为正值后为负值.同理得知,在2~4 s内,F与B成正比,安培力方向先向左后向右,即先为正值后为负值,与0~2 s内情况相同,故C正确,D错误.
题型九、电磁感应中的动力学问题
【典例9】.(2019·广西五市考前联考)如图所示,两根足够长的光滑金属导轨MN、PQ,间距为L,电阻不计,两导轨构成的平面与水平面成θ角.金属棒ab、cd用绝缘轻绳连接,其电阻均为R,质量分别为2m和m.沿斜面向上的力作用在cd上使两棒静止,整个装置处于垂直于导轨平面向上的匀强磁场中,磁感应强度大小为B,重力加速度大小为g,将轻绳烧断后,保持F不变,金属棒始终与导轨垂直且接触良好,则(  )
/
A.轻绳烧断瞬间,cd的加速度大小a=gsinθ
B.轻绳烧断后,cd做匀加速运动
C.轻绳烧断后,任意时刻两棒运动的速度大小之比vab∶vcd=1∶2
D.棒ab的最大速度vabm=
【答案】C
【解析】沿斜面向上的力F作用在cd上使两棒静止,由平衡条件可得F=3mgsin θ,轻绳烧断瞬间,cd受到沿斜面向上的力F和重力、支持力作用,由牛顿第二定律,F-mgsin θ=ma,解得cd的加速度大小a=2gsin θ,选项A错误;轻绳烧断后,cd切割磁感线产生感应电动势,回路中有感应电流,受到与速度相关的安培力作用,所以cd做变加速运动,选项B错误;对两导体棒组成的系统,所受合外力为零,系统动量守恒,由动量守恒定律可知,轻绳烧断后,任意时刻两棒运动的速度大小之比vab∶vcd=1∶2,选项C正确;当棒ab达到最大速度时,ab棒受力平衡,2mgsin θ=BIL,I=,E=BLvabm+BL·2vabm=3BLvabm,联立解得:vabm=,选项D错误.
题型十、电磁感应中的能量问题
【典例10】.(2019·天津高考)如图所示,固定在水平面上间距为l的两条平行光滑金属导轨,垂直于导轨放置的两根金属棒MN和PQ长度也为l、电阻均为R,两棒与导轨始终接触良好。MN两端通过开关S与电阻为R的单匝金属线圈相连,线圈内存在竖直向下均匀增加的磁场,磁通量变化率为常量k。图中虚线右侧有垂直于导轨平面向下的匀强磁场,磁感应强度大小为B。PQ的质量为m,金属导轨足够长、电阻忽略不计。
/
(1)闭合S,若使PQ保持静止,需在其上加多大的水平恒力F,并指出其方向;
(2)断开S,PQ在上述恒力作用下,由静止开始到速度大小为v的加速过程中流过PQ的电荷量为q,求该过程安培力做的功W。
【答案】 (1) 方向水平向右 (2)mv2-kq
【解析】(1)设线圈中的感应电动势为E,由法拉第电磁感应定律得,感应电动势E=,则
E=k①
设PQ与MN并联的电阻为R并,有
R并=②
闭合S时,设线圈中的电流为I,根据闭合电路欧姆定律得I=③
设PQ中的电流为IPQ,有
IPQ=I④
设PQ受到的安培力为F安,有
F安=BIPQl⑤
PQ保持静止,由受力平衡,有
F=F安⑥
联立①②③④⑤⑥式得
F=⑦
由楞次定律和右手螺旋定则得PQ中的电流方向为由Q到P,再由左手定则得PQ所受安培力的方向水平向左,则力F的方向水平向右。
(2)设PQ由静止开始到速度大小为v的加速过程中,PQ运动的位移为x,所用时间为Δt,回路中的磁通量变化量为ΔΦ,回路中产生的平均感应电动势为,有
=⑧
其中ΔΦ=Blx⑨
设PQ中的平均感应电流为,有
=⑩
根据电流的定义得
=?
由动能定理,有
Fx+W=mv2-0?
联立⑦⑧⑨⑩??式得
W=mv2-kq。?
/
1.(2019·湖南长沙模拟)自1932年磁单极子概念被狄拉克提出以来,不管是理论物理学家还是实验物理学家都一直在努力寻找,但迄今仍然没能找到它们存在的确凿证据.近年来,一些凝聚态物理学家找到了磁单极子存在的有力证据,并通过磁单极子的集体激发行为解释了一些新颖的物理现象,这使得磁单极子艰难的探索之路出现了一丝曙光.如果一个只有N极的磁单极子从上向下穿过如图所示的闭合超导线圈,则从上向下看,这个线圈中将出现(  )
/
A.先是逆时针方向,然后是顺时针方向的感应电流
B.先是顺时针方向,然后是逆时针方向的感应电流
C.逆时针方向的持续流动的感应电流
D.顺时针方向的持续流动的感应电流
2.(2019·山东聊城模拟)航母上飞机弹射起飞是利用电磁驱动来实现的.电磁驱动原理如图所示,当固定线圈上突然通过直流电流时,线圈端点的金属环被弹射出去.现在固定线圈左侧同一位置,先后放有分别用横截面积相等的铜和铝导线制成形状、大小相同的两个闭合环,且电阻率ρ铜<ρ铝.闭合开关S的瞬间(  )
/
A.从左侧看环中感应电流沿顺时针方向 B.铜环受到的安培力大于铝环受到的安培力
C.若将环放置在线圈右方,环将向左运动 D.电池正负极调换后,金属环不能向左弹射
3.(2019·广东四校联考)如图所示,在一磁感应强度B=0.5 T的匀强磁场中,垂直于磁场方向水平放置着两根相距L=0.1 m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值R=0.3 Ω的电阻.导轨上正交放置着金属棒ab,其电阻r=0.2 Ω.当金属棒在水平拉力作用下以速度v=4.0 m/s向左做匀速运动时(  )
/
A.ab棒所受安培力大小为0.02 N B.N、Q间电压为0.2 V
C.a端电势比b端电势低 D.回路中感应电流大小为1 A
4.(多选)(2019·广西三校联考)如图所示,线圈匝数为n,横截面积为S,线圈电阻为r,处于一个均匀增强的磁场中,磁感应强度随时间的变化率为k,磁场方向水平向右且与线圈平面垂直,电容器的电容为C,定值电阻的阻值为r.由此可知,下列说法正确的是(  )
/
A.电容器下极板带正电 B.电容器上极板带正电
C.电容器所带电荷量为 D.电容器所带电荷量为nSkC
5.(多选)(2019·黑龙江牡丹江一中模拟)如图所示,阻值为R的金属棒从图示位置ab分别以v1、v2的速度沿光滑水平导轨(电阻不计)匀速滑到a′b′位置,若v1∶v2=1∶2,则在这两次过程中(  )
/
A.回路电流I1∶I2=1∶2 B.产生的热量Q1∶Q2=1∶4
C.通过任一截面的电荷量q1∶q2=1∶1 D.外力的功率P1∶P2=1∶2
6.半径为r带缺口的刚性金属圆环在纸面上固定放置,在圆环的缺口两端引出两根导线,分别与两块垂直于纸面固定放置的平行金属板连接,两板间距为d,如图甲所示.有一变化的磁场垂直于纸面,规定方向向里为正,变化规律如图乙所示.在t=0时刻平板之间中心有一重力不计,电荷量为q的静止微粒,则以下说法正确的是(  )
/
A.第2 s内上极板为正极 B.第3 s内上极板为负极
C.第2 s末微粒回到了原来位置 D.第3 s末两极板之间的电场强度大小为
7.(2019·河北定州中学月考)如图所示,匀强磁场中固定的金属框架ABC,导体棒DE在框架ABC上沿图示方向匀速平移,框架和导体棒材料相同,接触电阻不计,则(  )
/
A.电路中感应电流保持一定 B.电路中的磁通量的变化率一定
C.电路中的感应电动势一定 D.DE棒受到的拉力一定
8.(2019·广西桂林市高三模拟)如图所示,有两根与水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R,下端足够长.空间有垂直于轨道平面的匀强磁场,磁感应强度为B,一根质量为m的金属杆从轨道上由静止滑下.经过足够长的时间后,金属杆的速度会趋近于一个最大速度vm,则(  )
/
A.如果B增大,vm将变大 B.如果α变大,vm将变大
C.如果R变大,vm将变大 D.如果m变小,vm将变大
9(2019·宁夏银川模拟)如图所示,相距为d的两条水平虚线之间有方向垂直纸面向里的匀强磁场,磁感应强度大小为B,正方形线圈abec边长为L(L/
A.产生的焦耳热为mgd B.产生的焦耳热为mg(d-L)
C.线圈的最小速度一定为2 D.线圈的最小速度可能为
10.(多选)(2019·广州荔湾区调研)CD、EF是两条水平放置的阻值可忽略的平行金属导轨,导轨间距为L,在水平导轨的左侧存在磁感应强度方向垂直导轨平面向上的匀强磁场,磁感应强度大小为B,磁场区域的宽度为d,如图所示.导轨的右端接有一阻值为R的电阻,左端与一弯曲的光滑轨道平滑连接.将一阻值为R、质量为m的导体棒从弯曲轨道上h高处由静止释放,导体棒最终恰好停在磁场的右边界处.已知导体棒与水平导轨接触良好,且动摩擦因数为μ,则下列说法中正确的是 (  )
/
A.通过电阻R的最大电流为 B.流过电阻R的电荷量为
C.整个电路中产生的焦耳热为mgh D.电阻R中产生的焦耳热为mg(h-μd)
11.(2019·常州检测)如图所示,水平面内有两根足够长的平行导轨L1、L2,其间距d=0.5 m,左端接有容量C=2 000 μF的电容器.质量m=20 g的导体棒可在导轨上无摩擦滑动,导体棒和导轨的电阻不计.整个空间存在着垂直导轨所在平面的匀强磁场,磁感应强度B=2 T.现用一沿导轨方向向右的恒力F1=0.44 N作用于导体棒,使导体棒从静止开始运动,经t时间后到达B处,速度v=5 m/s.此时,突然将拉力方向变为沿导轨向左,大小变为F2,又经2t时间后导体棒返回到初始位置A处,整个过程电容器未被击穿.求:
/
(1)导体棒运动到B处时,电容器C上的电荷量;
(2)t的大小;
(3)F2的大小.
12.(2019·焦作模拟)如图所示,在倾角θ=37°的光滑斜面上存在一垂直斜面向上的匀强磁场区域MNPQ,磁感应强度B的大小为5 T,磁场宽度d=0.55 m。有一边长L=0.4 m、质量m1=0.6 kg、电阻R=2 Ω的正方形均匀导体线框abcd通过一轻质细线跨过光滑的定滑轮与一质量m2=0.4 kg的物体相连。物体与水平面间的动摩擦因数μ=0.4,将线框从图示位置由静止释放,物体到定滑轮的距离足够长。(取g=10 m/s2,sin37°=0.6,cos37°=0.8)
/
(1)求线框abcd还未进入磁场的运动过程中,细线中的拉力大小;
(2)当ab边刚进入磁场时,线框恰好做匀速直线运动,求线框刚释放时ab边距磁场MN边界的距离x;
(3)在(2)问中的条件下,若cd边离开磁场边界PQ时,速度大小为2 m/s,求整个运动过程中ab边产生的热量。
/

专题十二 电磁感应(解析版)
考点
要求
考点解读及预测
电磁感应现象

1.考查方式
高考对本章内容考查命题频率较高,以选择题和计算题形式出题,难度一般在中档或中档以下.
2.命题趋势
(1)楞次定律、右手定则、左手定则的应用.
(2)与图象结合考查电磁感应现象.
(3)通过“杆+导轨”模型,“线圈穿过有界磁场”模型,考查电磁感应与力学、电路、能量等知识的综合应用.
.感应电流的产生条件

法拉第电磁感应定律 楞次定律

自感 涡流

1.电磁问题方向判断“三定则、一定律”的应用
(1)安培定则:判断运动电荷、电流产生的磁场方向。
(2)左手定则:判断磁场对运动电荷、电流的作用力的方向。
(3)楞次定律:判断闭合电路磁通量发生变化产生的感应电流的磁场方向。
(4)右手定则:判断闭合电路中部分导体切割磁感线产生的感应电流的方向。
2.楞次定律推论的应用技巧
(1)“增反减同”;(2)“来拒去留”;(3)“增缩减扩”。
3.四种求电动势的方法
(1)平均电动势E=n。
(2)垂直切割E=BLv。
(3)导体棒绕与磁场平行的轴匀速转动E=Bl2ω。
(4)线圈绕与磁场垂直的轴匀速转动e=nBSωsinωt。
4.感应电荷量的两种求法
(1)当回路中的磁通量发生变化时,由于感应电场的作用使电荷发生定向移动而形成感应电流。通过的电荷量表达式为q=IΔt=n·Δt=n。
(2)导体切割磁感线运动通过的电荷量q满足的关系式:-BlΔt=-Blq=mΔv。
5.解决电磁感应图象问题的两种常用方法
(1)排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正负以及是否过某些特殊点,以排除错误的选项。
(2)函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图象进行分析和判断。
6.三步解决电磁感应中电路问题
(1)确定电源:E=n或E=Blv。
(2)分析电路结构:分析内、外电路,以及外电路的串并联关系,画出等效电路图。
(3)应用闭合电路欧姆定律及串并联电路的基本规律等列方程求解。
7.电磁感应中力、能量和动量综合问题的分析方法
(1)分析“受力”:分析研究对象的受力情况,特别关注安培力的方向。
(2)分析“能量”:搞清楚有哪些力做功,就可以知道有哪些形式的能量发生了变化,根据动能定理或能量守恒定律等列方程求解。
(3)分析“动量”:在电磁感应中可用动量定理求变力的作用时间、速度、位移和电荷量(一般应用于单杆切割磁感线运动)。
①求速度或电荷量:-BlΔt=mv2-mv1,q=Δt。
②求时间:FΔt+IA=mv2-mv1,IA=-BlΔt=-Bl。
③求位移:-BlΔt=-=mv2-mv1,即-x=m(v2-v1)。
一、电磁感应现象的理解和判断
常见的产生感应电流的三种情况
二、法拉第电磁感应定律的应用
1.求解感应电动势常见情况
情景图
研究对象
回路(不一定闭合)
一段直导线(或等效成直导线)
绕一端转动的一段导体棒
绕与B垂直的轴转动的导线框
表达式
E=n
E=BLv(L为有效长度)
E=BL2ω
E=NBSωcos ωt
2.决定感应电动势大小的因素
感应电动势E的大小决定于穿过电路的磁通量的变化率
和线圈的匝数n.而与磁通量的大小、磁通量变化量ΔΦ的大小
无必然联系.
3.磁通量变化通常有两种方式
(1)磁感应强度B不变,垂直于磁场的回路面积发生变化,此时E=n ;
(2)垂直于磁场的回路面积不变,磁感应强度发生变化,此时E=n,其中是B-t图象的斜率.
三、通电自感与断电自感的比较
通电自感
断电自感
电路图
器材要求
A 1、A 2同规格,R=RL,L较大
L很大(有铁芯)
现象
在S闭合瞬间,A 2灯立即亮起来,A 1灯逐渐变亮,最终一样亮
在开关S断开时,灯A突然闪亮一下后再渐渐熄灭(当抽掉铁芯后,重做实验,断开开关S时,会看到灯A马上熄灭)
原因
由于开关闭合时,流过电感线圈的电流迅速增大,使线圈产生自感电动势,阻碍了电流的增大,流过A 1灯的电流比流过A 2灯的电流增加得慢
断开开关S时,流过线圈L的电流减小,产生自感电动势,阻碍了电流的减小,使电流继续存在一段时间;在S断开后,通过L的电流反向通过A灯,且由于RL?R A,使得流过A灯的电流在开关断开瞬间突然增大,从而使A灯的发光功率突然变大
能量转
化情况
电能转化为磁场能
磁场能转化为电能
四、电磁感应中的电路问题
1.电磁感应中电路知识的关系图

2.分析电磁感应电路问题的基本思路

电磁感应的图象问题
1.题型特点
(1)由给定的电磁感应过程选出或画出正确的图象。
(2)由给定的有关图象分析电磁感应过程,求解相应的物理量。
(3)根据图象定量、定性计算。
2.电磁感应图象问题的解决方法
(1)明确图象的种类,即是B-t图象还是Φ-t图象,是E-t图象还是I-t图象等。
(2)分析电磁感应的具体过程。
(3)用右手定则或楞次定律确定方向对应关系。
(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式。
(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等。
(6)判断图象(或画图象或应用图象解决问题)。
六、电磁感应中的动力学问题
1.两种状态及处理方法
状态
特征
处理方法
平衡态
加速度为零
根据平衡条件列式分析
非平衡态
加速度不为零
根据牛顿第二定律进行动态分析或结合功能关系进行分析
2.力学对象和电学对象的相互关系
七、电磁感应中的能量问题
1.电能求解的三种主要思路
(1)利用克服安培力求解:电磁感应中产生的电能等于克服安培力所做的功。
(2)利用能量守恒或功能关系求解。
(3)利用电路特征来求解:通过电路中所产生的电能来计算。
2.解题的一般步骤
(1)确定研究对象(导体棒或回路)。
(2)弄清电磁感应过程中,哪些力做功,哪些形式的能量相互转化。
(3)根据能量守恒定律列式求解。
题型一、电磁感应现象的理解和判断
【典例1】.(2019·佛山高三质检)如图所示,一通电螺线管b放在闭合金属线圈a内,螺线管的中心轴线恰和线圈的一条直径MN重合.要使线圈a中产生感应电流,可采用的方法有(  )
A.使通电螺线管中的电流发生变化
B.使螺线管绕垂直于线圈平面且过线圈圆心的轴转动
C.使线圈a以MN为轴转动
D.使线圈绕垂直于MN的直径转动
【答案】D
【解析】在A、B、C三种情况下,穿过线圈a的磁通量始终为零,因此不产生感应电流,A、B、C错误;选项D中,当线圈绕垂直于MN的直径转动时,穿过线圈的磁通量发生变化,会产生感应电流,故D正确.
题型二、对楞次定律和右手定则的理解与应用
【典例2】.(2019·江苏扬州一模)航母上飞机弹射起飞是利用电磁驱动来实现的。电磁驱动原理如图所示,在固定线圈左右两侧对称位置放置两个闭合金属圆环,铝环和铜环的形状、大小相同,已知铜的电阻率较小,则合上开关S的瞬间(  )
A.两个金属环都向左运动
B.两个金属环都向右运动
C.铜环受到的安培力小于铝环受到的安培力
D.从左侧向右看,铝环中感应电流沿顺时针方向
【答案】 D
【解析】 合上开关S的瞬间,穿过两个金属环的磁通量变大,为阻碍磁通量的增大,铝环向左运动,铜环向右运动,A、B错误;由于铜环和铝环的形状、大小相同,铜的电阻率较小,故铜环的电阻较小,两环对称地放在固定线圈两侧,闭合S瞬间,穿过两环的磁通量的变化率相同,两环产生的感应电动势大小相同,铜环电阻较小,则铜环中的感应电流较大,故铜环受到的安培力较大,C错误;由右手螺旋定则可知,闭合S瞬间,穿过铝环的磁通量向左增大,由楞次定律知,从左侧向右看,铝环中感应电流沿顺时针方向,D正确。
题型三、 三定则、一定律的综合应用
【典例3】.(2019·贵州五校联考)如图所示,在匀强磁场中,放有一与线圈D相连接的平行导轨,要使放在线圈D中的线圈A(A、D两线圈同心共面)各处受到沿半径方向指向圆心的力,金属棒MN的运动情况可能是(  )
A.匀速向右        B.加速向左
C.加速向右 D.减速向左
【答案】BC
【解析】若金属棒MN匀速向右运动,则线圈D与MN组成回路中的电流恒定,故穿过线圈A的磁通量不变,线圈A不受安培力作用,选项A错误;若金属棒MN加速向左运动,则线圈D与MN组成回路中的电流不断增强,故穿过线圈A的磁通量不断增强,根据楞次定律,为阻碍磁通量的增强,线圈A有收缩的趋势,受到沿半径方向指向圆心的安培力,选项B正确;同理可得,当金属棒MN加速向右运动时,线圈A有收缩的趋势,受到沿半径方向指向圆心的安培力,选项C正确;当金属棒MN减速向左运动时,线圈A有扩张的趋势,受到沿半径方向背离圆心的安培力,选项D错误.
题型四、法拉第电磁感应定律的应用
【典例4】.(2019·济南高三模拟)在如图甲所示的电路中,螺线管匝数n=1000匝,横截面积S=20 cm2,螺线管导线电阻r=1.0 Ω,R1=4.0 Ω,R2=5.0 Ω,C=30 μF。在一段时间内,垂直穿过螺线管的磁场的磁感应强度B的方向如图甲所示,大小按如图乙所示的规律变化,则下列说法中正确的是(  )
A.螺线管中产生的感应电动势为1.2 V
B.闭合S,电路中的电流稳定后,电容器下极板带负电
C.闭合S,电路中的电流稳定后,电阻R1的电功率为2.56×10-2 W
D.S断开后,流经R2的电量为1.8×10-2 C
【答案】 C
【解析】 根据法拉第电磁感应定律:E=n=nS,解得:E=0.8 V,A错误;根据楞次定律可知,螺线管的感应电流盘旋而下,则螺线管下端是电源的正极,电容器下极板带正电,B错误;根据闭合电路欧姆定律,有:I==0.08 A,根据P=I2R1得:电阻R1的电功率P=2.56×10-2 W,C正确;S断开后,流经R2的电量即为S闭合时电容器极板上所带的电量Q,电容器两极板间的电压为:U=IR2=0.4 V,流经R2的电量为:Q=CU=1.2×10-5 C,D错误
题型五 导体棒切割磁感线产生感应电动势
【典例5】.(2019·北京高考)如图所示,垂直于纸面的匀强磁场磁感应强度为B。纸面内有一正方形均匀金属线框abcd,其边长为L,总电阻为R,ad边与磁场边界平行。从ad边刚进入磁场直至bc边刚要进入的过程中,线框在向左的拉力作用下以速度v匀速运动,求:
(1)感应电动势的大小E;
(2)拉力做功的功率P;
(3)ab边产生的焦耳热Q。
【答案】 (1)BLv (2) (3)
【解析】 (1)由法拉第电磁感应定律可得,感应电动势
E=BLv。
(2)线框中的感应电流I=
拉力大小等于安培力大小F=BIL
拉力的功率P=Fv=。
(3)线框ab边电阻Rab=
时间t=
ab边产生的焦耳热Q=I2Rabt=。
题型六 自感现象
【典例6】 (2019·江苏扬州高邮高三下学期调研)如图所示,两灯泡A1、A2相同,A1与一理想二极管D连接,线圈L的直流电阻不计。下列说法正确的是(  )
A.闭合开关S后,A1会逐渐变亮
B.闭合开关S稳定后,A1、A2亮度相同
C.断开S的瞬间,a点的电势比b点低
D.断开S的瞬间,A1会逐渐熄灭
【答案】 C
【解析】 闭合开关S后,虽然线圈产生自感电动势阻碍电流的增大,但两灯和线圈不是串联的关系,故两灯立刻变亮,A错误;闭合开关S稳定后,因线圈L的直流电阻不计,所以A1与二极管被短路,灯泡A1不亮,而A2亮,因此A1、A2亮度不同,B错误;断开S的瞬间,A2会立刻熄灭,因线圈产生感应电动势,故a点的电势低于b点,线圈L与灯泡A1及二极管构成回路,但二极管具有单向导电性,所以回路中没有感应电流,A1会立即熄灭,C正确,D错误。
题型七 电磁感应中的电路问题
【典例7】.(2019·济宁调研)如图甲所示,一个电阻值为R、匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路,线圈的半径为r1。在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图乙所示(规定图甲中B的方向为正方向)。图线与横、纵轴的截距分别为t0和B0,导线的电阻不计。求0~t1时间内:
(1)通过电阻R1的电流大小和方向;
(2)通过电阻R1的电荷量q及电阻R1上产生的热量。
【答案】 (1) 由b到a (2) 
【解析】 (1)根据楞次定律可知,通过R1的电流方向为由b到a。根据法拉第电磁感应定律得,线圈中的电动势
E=n=
根据闭合电路欧姆定律得,通过R1的电流
I==。
(2)通过R1的电荷量q=It1=
R1上产生的热量Q=I2R1t1=。
题型八 电磁感应的图象问题
【典例8】.(2019·山东泰安检测)矩形线框abcd固定放在匀强磁场中,磁场方向与线圈平面垂直,磁感应强度B随时间t变化的图象如图甲所示.设t=0时刻,磁感应强度的方向垂直纸面向里,图乙中i表示线圈中感应电流的大小(规定电流沿顺时针方向为正),F表示线框ab边所受的安培力的大小(规定ab边中所受的安培力方向向左为正),则下列图象中可能正确的是 (  )

【答案】AC
【解析】在0~2 s内,磁感应强度均匀变化,线框的磁通量均匀变化,产生恒定电流.磁场方向先向里后向外,磁通量先减小后增大,由楞次定律可知,感应电流方向为顺时针方向,电流为正值.根据法拉第电磁感应定律得:E=S,该段时间内恒定,则感应电动势恒定,由I=可知感应电流也一定.同理得知,在2~4 s内,感应电流方向为逆时针方向,电流为负值,感应电流也一定,故A正确,B错误;在0~2 s内,线框ab边所受的安培力的大小为F=BIL,IL一定,F与B成正比,而由楞次定律判断可知,安培力方向先向左后向右,即先为正值后为负值.同理得知,在2~4 s内,F与B成正比,安培力方向先向左后向右,即先为正值后为负值,与0~2 s内情况相同,故C正确,D错误.
题型九、电磁感应中的动力学问题
【典例9】.(2019·广西五市考前联考)如图所示,两根足够长的光滑金属导轨MN、PQ,间距为L,电阻不计,两导轨构成的平面与水平面成θ角.金属棒ab、cd用绝缘轻绳连接,其电阻均为R,质量分别为2m和m.沿斜面向上的力作用在cd上使两棒静止,整个装置处于垂直于导轨平面向上的匀强磁场中,磁感应强度大小为B,重力加速度大小为g,将轻绳烧断后,保持F不变,金属棒始终与导轨垂直且接触良好,则(  )
A.轻绳烧断瞬间,cd的加速度大小a=gsinθ
B.轻绳烧断后,cd做匀加速运动
C.轻绳烧断后,任意时刻两棒运动的速度大小之比vab∶vcd=1∶2
D.棒ab的最大速度vabm=
【答案】C
【解析】沿斜面向上的力F作用在cd上使两棒静止,由平衡条件可得F=3mgsin θ,轻绳烧断瞬间,cd受到沿斜面向上的力F和重力、支持力作用,由牛顿第二定律,F-mgsin θ=ma,解得cd的加速度大小a=2gsin θ,选项A错误;轻绳烧断后,cd切割磁感线产生感应电动势,回路中有感应电流,受到与速度相关的安培力作用,所以cd做变加速运动,选项B错误;对两导体棒组成的系统,所受合外力为零,系统动量守恒,由动量守恒定律可知,轻绳烧断后,任意时刻两棒运动的速度大小之比vab∶vcd=1∶2,选项C正确;当棒ab达到最大速度时,ab棒受力平衡,2mgsin θ=BIL,I=,E=BLvabm+BL·2vabm=3BLvabm,联立解得:vabm=,选项D错误.
题型十、电磁感应中的能量问题
【典例10】.(2019·天津高考)如图所示,固定在水平面上间距为l的两条平行光滑金属导轨,垂直于导轨放置的两根金属棒MN和PQ长度也为l、电阻均为R,两棒与导轨始终接触良好。MN两端通过开关S与电阻为R的单匝金属线圈相连,线圈内存在竖直向下均匀增加的磁场,磁通量变化率为常量k。图中虚线右侧有垂直于导轨平面向下的匀强磁场,磁感应强度大小为B。PQ的质量为m,金属导轨足够长、电阻忽略不计。
(1)闭合S,若使PQ保持静止,需在其上加多大的水平恒力F,并指出其方向;
(2)断开S,PQ在上述恒力作用下,由静止开始到速度大小为v的加速过程中流过PQ的电荷量为q,求该过程安培力做的功W。
【答案】 (1) 方向水平向右 (2)mv2-kq
【解析】(1)设线圈中的感应电动势为E,由法拉第电磁感应定律得,感应电动势E=,则
E=k①
设PQ与MN并联的电阻为R并,有
R并=②
闭合S时,设线圈中的电流为I,根据闭合电路欧姆定律得I=③
设PQ中的电流为IPQ,有
IPQ=I④
设PQ受到的安培力为F安,有
F安=BIPQl⑤
PQ保持静止,由受力平衡,有
F=F安⑥
联立①②③④⑤⑥式得
F=⑦
由楞次定律和右手螺旋定则得PQ中的电流方向为由Q到P,再由左手定则得PQ所受安培力的方向水平向左,则力F的方向水平向右。
(2)设PQ由静止开始到速度大小为v的加速过程中,PQ运动的位移为x,所用时间为Δt,回路中的磁通量变化量为ΔΦ,回路中产生的平均感应电动势为,有
=⑧
其中ΔΦ=Blx⑨
设PQ中的平均感应电流为,有
=⑩
根据电流的定义得
=?
由动能定理,有
Fx+W=mv2-0?
联立⑦⑧⑨⑩??式得
W=mv2-kq。?
1.(2019·湖南长沙模拟)自1932年磁单极子概念被狄拉克提出以来,不管是理论物理学家还是实验物理学家都一直在努力寻找,但迄今仍然没能找到它们存在的确凿证据.近年来,一些凝聚态物理学家找到了磁单极子存在的有力证据,并通过磁单极子的集体激发行为解释了一些新颖的物理现象,这使得磁单极子艰难的探索之路出现了一丝曙光.如果一个只有N极的磁单极子从上向下穿过如图所示的闭合超导线圈,则从上向下看,这个线圈中将出现(  )
A.先是逆时针方向,然后是顺时针方向的感应电流
B.先是顺时针方向,然后是逆时针方向的感应电流
C.逆时针方向的持续流动的感应电流
D.顺时针方向的持续流动的感应电流
【答案】C
【解析】N极磁单极子穿过超导线圈的过程中,当磁单极子靠近线圈时,穿过线圈的磁通量增加,且磁场方向从上向下,所以由楞次定律可知感应电流方向为逆时针;当磁单极子远离线圈时,穿过线圈的磁通量减小,且磁场方向从下向上,所以由楞次定律可知感应电流方向为逆时针.因此线圈中产生的感应电流方向不变.由于超导线圈中没有电阻,因此感应电流将长期维持下去,故A、B、D错误,C正确.
2.(2019·山东聊城模拟)航母上飞机弹射起飞是利用电磁驱动来实现的.电磁驱动原理如图所示,当固定线圈上突然通过直流电流时,线圈端点的金属环被弹射出去.现在固定线圈左侧同一位置,先后放有分别用横截面积相等的铜和铝导线制成形状、大小相同的两个闭合环,且电阻率ρ铜<ρ铝.闭合开关S的瞬间(  )
A.从左侧看环中感应电流沿顺时针方向
B.铜环受到的安培力大于铝环受到的安培力
C.若将环放置在线圈右方,环将向左运动
D.电池正负极调换后,金属环不能向左弹射
【答案】AB
【解析】线圈中电流为右侧流入,磁场方向为向左,在闭合开关的过程中,磁场变强,则由楞次定律可知,环中感应电流由左侧看为顺时针,选项A正确;由于铜环的电阻较小,故铜环中感应电流较大,故铜环受到的安培力要大于铝环的,选项B正确;若将环放在线圈右方,根据楞次定律可得,环将向右运动,选项C错误;电池正负极调换后,金属环受力仍向左,故仍将向左弹出,选项D错误.
3.(2019·广东四校联考)如图所示,在一磁感应强度B=0.5 T的匀强磁场中,垂直于磁场方向水平放置着两根相距L=0.1 m的平行金属导轨MN和PQ,导轨电阻忽略不计,在两根导轨的端点N、Q之间连接一阻值R=0.3 Ω的电阻.导轨上正交放置着金属棒ab,其电阻r=0.2 Ω.当金属棒在水平拉力作用下以速度v=4.0 m/s向左做匀速运动时(  )
A.ab棒所受安培力大小为0.02 N B.N、Q间电压为0.2 V
C.a端电势比b端电势低 D.回路中感应电流大小为1 A
【答案】:A
【解析】:ab棒产生的电动势E=BLv=0.2 V,电流I==0.4 A,ab棒受的安培力F=BIL=0.02 N,A正确,D错误;N、Q之间的电压U=E=0.12 V,B错误;由右手定则得a端电势较高,C错误.
4.(多选)(2019·广西三校联考)如图所示,线圈匝数为n,横截面积为S,线圈电阻为r,处于一个均匀增强的磁场中,磁感应强度随时间的变化率为k,磁场方向水平向右且与线圈平面垂直,电容器的电容为C,定值电阻的阻值为r.由此可知,下列说法正确的是(  )
A.电容器下极板带正电 B.电容器上极板带正电
C.电容器所带电荷量为 D.电容器所带电荷量为nSkC
【答案】BC
【解析】根据磁场向右均匀增强,并由楞次定律可知,电容器上极板带正电,故A错误,B正确.闭合线圈与阻值为r的电阻形成闭合回路,线圈相当于电源,电容器两极板间的电压等于路端电压,线圈产生的感应电动势为E=nS=nSk,路端电压U=·r=,则电容器所带电荷量为Q=CU=,故C正确,D错误.
5.(多选)(2019·黑龙江牡丹江一中模拟)如图所示,阻值为R的金属棒从图示位置ab分别以v1、v2的速度沿光滑水平导轨(电阻不计)匀速滑到a′b′位置,若v1∶v2=1∶2,则在这两次过程中(  )
A.回路电流I1∶I2=1∶2 B.产生的热量Q1∶Q2=1∶4
C.通过任一截面的电荷量q1∶q2=1∶1 D.外力的功率P1∶P2=1∶2
【答案】:AC
【解析】:回路中感应电流为I==,I∝v,则得I1∶I2=v1∶v2=1∶2,故A正确;产生的热量为Q=I2Rt=()2R×=,Q∝v,则得Q1∶Q2=v1∶v2=1∶2,故B错误;通过任一截面的电荷量为q=It=t=,q与v无关,则得q1∶q2=1∶1,故C正确;由于金属棒匀速运动,外力的功率等于回路中的功率,即得P=I2R=()2R,P∝v2,则得P1∶P2=1∶4,故D错误.
6.半径为r带缺口的刚性金属圆环在纸面上固定放置,在圆环的缺口两端引出两根导线,分别与两块垂直于纸面固定放置的平行金属板连接,两板间距为d,如图甲所示.有一变化的磁场垂直于纸面,规定方向向里为正,变化规律如图乙所示.在t=0时刻平板之间中心有一重力不计,电荷量为q的静止微粒,则以下说法正确的是(  )
A.第2 s内上极板为正极 B.第3 s内上极板为负极
C.第2 s末微粒回到了原来位置 D.第3 s末两极板之间的电场强度大小为
【答案】A
【解析】第2 s内磁场强度减小,所以圆环产生感应电动势,相当于一电源,由楞次定律知,上极板为正极,A正确;第3 s内磁场方向向外,强度增加,产生的感应电动势仍然使极板为正极,故B错误;第1 s内,上极板为负极,第2 s内,上极板为正极,这个过程中电场强度反向,所以微粒先加速,然后减速,当第2 s末微粒速度为零,离开中心位置最远,第3 s末圆环产生的感应电动势为=0.1πr2,电场强度E==,C、D错误.
7.(2019·河北定州中学月考)如图所示,匀强磁场中固定的金属框架ABC,导体棒DE在框架ABC上沿图示方向匀速平移,框架和导体棒材料相同,接触电阻不计,则(  )
A.电路中感应电流保持一定 B.电路中的磁通量的变化率一定
C.电路中的感应电动势一定 D.DE棒受到的拉力一定
【答案】:A
【解析】:根据法拉第电磁感应定律可知,电路中磁通量的变化率等于回路中产生的感应电动势,而感应电动势E=BLv,B、v不变,有效切割的长度L增加,则电路中磁通量的变化率和感应电动势都增加,故B、C错误;设金属框架的电阻率为ρ,截面积为S,导体棒DE从B点开始运动的时间为t,∠ABC=2θ,则回路中产生的感应电动势为E=2B·vt·tan θ·v,回路的电阻R=ρ,电路中感应电流的大小I==,B、S、ρ、θ、v均不变,则I不变,故A正确.DE杆所受的磁场力的大小F=BIL=BI·2vt·tan θ随着时间t的延长而增大,故D错误.
8.(2019·广西桂林市高三模拟)如图所示,有两根与水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R,下端足够长.空间有垂直于轨道平面的匀强磁场,磁感应强度为B,一根质量为m的金属杆从轨道上由静止滑下.经过足够长的时间后,金属杆的速度会趋近于一个最大速度vm,则(  )
A.如果B增大,vm将变大 B.如果α变大,vm将变大
C.如果R变大,vm将变大 D.如果m变小,vm将变大
【答案】BC
【解析】金属杆在下滑过程中先做加速度减小的加速运动,速度达到最大后做匀速运动.所以当F安=mgsin α时速度最大,F安=BIl=,所以vm=,分析各选项知B、C正确.
9(2019·宁夏银川模拟)如图所示,相距为d的两条水平虚线之间有方向垂直纸面向里的匀强磁场,磁感应强度大小为B,正方形线圈abec边长为L(LA.产生的焦耳热为mgd B.产生的焦耳热为mg(d-L)
C.线圈的最小速度一定为2 D.线圈的最小速度可能为
【答案】:D
【解析】:根据能量守恒定律,在ce边刚进入磁场到ce边刚穿出磁场的过程中,线圈的动能不变,重力势能全部转化为线圈进入磁场的过程中产生的热量,即Q=mgd,即从ce边刚进入磁场到ab边刚进入磁场过程产生的焦耳热为mgd,从ce边刚穿出磁场到ab边离开磁场的过程,线圈产生的热量与从ce边刚进入磁场到ab边刚进入磁场的过程中产生的热量相等,故从线圈的ce边进入磁场到ab边离开磁场的过程,产生的热量为2Q=2mgd,选项A、B错误;若线圈进入磁场的整个过程做减速运动,线圈全部进入磁场后做匀加速运动,则可知线圈刚全部进入磁场时的瞬时速度最小,设线圈的最小速度为vmin,线圈从开始下落到线圈刚完全进入磁场的过程,根据能量守恒定律得mg(h+L)=Q+mvmin2,代入数据解得线圈的最小速度为vmin=,选项C错误;线圈在进入磁场的过程中,先做减速运动,可能在完全进入磁场前已经做匀速运动,则有mg=BIL=,解得vmin′=,选项D正确.
10.(多选)(2019·广州荔湾区调研)CD、EF是两条水平放置的阻值可忽略的平行金属导轨,导轨间距为L,在水平导轨的左侧存在磁感应强度方向垂直导轨平面向上的匀强磁场,磁感应强度大小为B,磁场区域的宽度为d,如图所示.导轨的右端接有一阻值为R的电阻,左端与一弯曲的光滑轨道平滑连接.将一阻值为R、质量为m的导体棒从弯曲轨道上h高处由静止释放,导体棒最终恰好停在磁场的右边界处.已知导体棒与水平导轨接触良好,且动摩擦因数为μ,则下列说法中正确的是 (  )
A.通过电阻R的最大电流为 B.流过电阻R的电荷量为
C.整个电路中产生的焦耳热为mgh D.电阻R中产生的焦耳热为mg(h-μd)
【答案】ABD
【解析】质量为m的导体棒从弯曲轨道上h高处由静止释放,刚进入磁场时速度最大,由mgh=mv2,得最大速度v=,产生的最大感应电动势Em=BLv=BL.由闭合电路欧姆定律可得通过电阻R的最大电流Im==,A正确;在导体棒滑过磁场区域的过程中,产生的感应电动势的平均值==,平均感应电流=,流过电阻R的电荷量为q=t,联立解得q==,B正确;由能量守恒定律可知整个电路中产生的焦耳热Q=mgh-μmgd,C错误;电阻R中产生的焦耳热Q1=Q=mg(h-μd),D正确.
11.(2019·常州检测)如图所示,水平面内有两根足够长的平行导轨L1、L2,其间距d=0.5 m,左端接有容量C=2 000 μF的电容器.质量m=20 g的导体棒可在导轨上无摩擦滑动,导体棒和导轨的电阻不计.整个空间存在着垂直导轨所在平面的匀强磁场,磁感应强度B=2 T.现用一沿导轨方向向右的恒力F1=0.44 N作用于导体棒,使导体棒从静止开始运动,经t时间后到达B处,速度v=5 m/s.此时,突然将拉力方向变为沿导轨向左,大小变为F2,又经2t时间后导体棒返回到初始位置A处,整个过程电容器未被击穿.求:
(1)导体棒运动到B处时,电容器C上的电荷量;
(2)t的大小;
(3)F2的大小.
【答案】(1)1×10-2 C (2)0.25 s (3)0.55 N
【解析】 (1)当导体棒运动到B处时,电容器两端电压为U=Bdv=2×0.5×5 V=5 V
此时电容器的带电荷量
q=CU=2 000×10-6×5 C=1×10-2 C.
(2)棒在F1作用下有F1-BId=ma1,
又I==,a1=
联立解得a1==20 m/s2
则t==0.25 s.
(3)由(2)可知棒在F2作用下,运动的加速度a2=,方向向左,又a1t2=-[a1t·2t-a2(2t)2],将相关数据代入解得F2=0.55 N.
12.(2019·焦作模拟)如图所示,在倾角θ=37°的光滑斜面上存在一垂直斜面向上的匀强磁场区域MNPQ,磁感应强度B的大小为5 T,磁场宽度d=0.55 m。有一边长L=0.4 m、质量m1=0.6 kg、电阻R=2 Ω的正方形均匀导体线框abcd通过一轻质细线跨过光滑的定滑轮与一质量m2=0.4 kg的物体相连。物体与水平面间的动摩擦因数μ=0.4,将线框从图示位置由静止释放,物体到定滑轮的距离足够长。(取g=10 m/s2,sin37°=0.6,cos37°=0.8)
(1)求线框abcd还未进入磁场的运动过程中,细线中的拉力大小;
(2)当ab边刚进入磁场时,线框恰好做匀速直线运动,求线框刚释放时ab边距磁场MN边界的距离x;
(3)在(2)问中的条件下,若cd边离开磁场边界PQ时,速度大小为2 m/s,求整个运动过程中ab边产生的热量。
【答案】(1)2.4 N (2)0.25 m (3)0.1 J
【解析】(1)线框还未进入磁场的过程中,以线框为研究对象,
由牛顿第二定律得m1gsinθ-T=m1a
以物体为研究对象,
由牛顿第二定律得T-μm2g=m2a,
联立解得T=2.4 N,a=2 m/s2。
(2)线框刚进入磁场时恰好做匀速直线运动,
有m1gsinθ--T=0,T-μm2g=0,
解得v=1 m/s。
线框进入磁场前做匀加速直线运动,有v2=2ax,
解得x=0.25 m。
(3)线框从开始运动到cd边恰好离开磁场边界PQ时,对整体有m1gsinθ(x+d+L)-μm2g(x+d+L)=(m1+m2)v+Q,
解得Q=0.4 J,
根据焦耳定律有Q=I2Rt,
ab边产生的热量Qab=I2t,所以Qab=Q=0.1 J。
同课章节目录