第2课时 集合的表示
学习目标 1.了解空集、有限集、无限集的概念.2.掌握用列举法表示有限集.3.理解描述法的格式及其适用情形.4.学会在不同的集合表示法中作出选择和转换.
知识点一 集合的分类
思考 集合{x∈R|x2<0}中有多少个元素?{x∈R|x2=0}呢?{x∈R|x2>0}呢?
答案 0个;1个;无限多个.
梳理 按集合中的元素个数分类,不含有任何元素的集合叫作空集,记作?;含有有限个元素的集合叫有限集;含有无限个元素的集合叫无限集.
知识点二 列举法
思考 要研究集合,要在集合的基础上研究其他问题,首先要表示集合.而当集合中元素较少时,如何直观地表示集合?
答案 把它们一一列举出来.
梳理 把集合中的元素一一列举出来写在大括号内的方法叫作列举法.适用于元素较少的集合.
知识点三 描述法
思考 能用列举法表示所有大于1的实数吗?如果不能,又该怎样表示?
答案 不能.表示集合最本质的任务是要界定集合中有哪些元素,而完成此任务除了一一列举,还可用元素的共同特征(如都大于1)来表示集合,如大于1的实数可表示为{x∈R|x>1}.
梳理 描述法:用确定的条件表示某些对象属于一个集合并写在大括号内的方法.符号表示为{|},如{x∈A|p(x)}.
1.=1.( × )
2.=.( × )
3.=.( √ )
4.=.( √ )
类型一 用列举法表示集合
例1 用列举法表示下列集合.
(1)小于10的所有自然数组成的集合;
(2)方程x2=x的所有实数根组成的集合.
考点 用列举法表示集合
题点 用列举法表示集合
解 (1)设小于10的所有自然数组成的集合为A,
那么A={0,1,2,3,4,5,6,7,8,9}.
(2)设方程x2=x的所有实数根组成的集合为B,
那么B={0,1}.
反思与感悟 (1)集合中的元素具有无序性、互异性,所以用列举法表示集合时不必考虑元素的顺序,且元素不能重复,元素与元素之间要用“,”隔开.
(2)列举法表示的集合的种类
①元素个数少且有限时,全部列举,如{1,2,3,4};
②元素个数多且有限时,可以列举部分,中间用省略号表示,如“从1到1 000的所有自然数”可以表示为{1,2,3,…,1 000};
③元素个数无限但有规律时,也可以类似地用省略号列举,如:自然数集N可以表示为{0,1,2,3,…}.
跟踪训练1 用列举法表示下列集合.
(1)由所有小于10的既是奇数又是素数的自然数组成的集合;
(2)由1~20的所有素数组成的集合.
考点 用列举法表示集合
题点 用列举法表示集合
解 (1)满足条件的数有3,5,7,所以所求集合为{3,5,7}.
(2)设由1~20的所有素数组成的集合为C,
那么C={2,3,5,7,11,13,17,19}.
类型二 用描述法表示集合
例2 试用描述法表示下列集合.
(1)方程x2-2=0的所有实数根组成的集合;
(2)由大于10小于20的所有整数组成的集合.
考点 用描述法表示集合
题点 用描述法表示集合
解 (1)设方程x2-2=0的实数根为x,并且满足条件x2-2=0,因此,用描述法表示为A={x∈R|x2-2=0}.
(2)设大于10小于20的整数为x,它满足条件x∈Z,且10引申探究
用描述法表示函数y=x2-2图像上所有的点组成的集合.
解 {(x,y)|y=x2-2}.
反思与感悟 用描述法表示集合时应注意的四点
(1)写清楚该集合中元素的代号.
(2)说明该集合中元素的性质.
(3)所有描述的内容都可写在集合符号内.
(4)在描述法的一般形式{x∈I|p(x)}中,“x”是集合中元素的代表形式,I是x的范围,“p(x)”是集合中元素x的共同特征,竖线不可省略.
跟踪训练2 用描述法表示下列集合.
(1)方程x2+y2-4x+6y+13=0的解集;
(2)平面直角坐标系中坐标轴上的点组成的集合.
考点 用描述法表示集合
题点 用描述法表示集合
解 (1)方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0,解得x=2,y=-3.
所以方程的解集为{(x,y)|x=2,y=-3}.
(2)坐标轴上的点(x,y)的特点是横、纵坐标中至少有一个为0,即xy=0,故坐标轴上的点的集合可表示为{(x,y)|xy=0}.
类型三 集合表示的综合应用
命题角度1 选择适当的方法表示集合
例3 用适当的方法表示下列集合.
(1)由x=2n,0≤n≤2且n∈N组成的集合;
(2)抛物线y=x2-2x与x轴的公共点的集合;
(3)直线y=x上去掉原点的点的集合.
考点 集合的表示综合
题点 用适当的方法表示集合
解 (1)列举法:{0,2,4}.或描述法{x|x=2n,0≤n≤2且n∈N}.
(2)列举法:{(0,0),(2,0)}.
(3)描述法:{(x,y)|y=x,x≠0}.
反思与感悟 用列举法与描述法表示集合时,一要明确集合中的元素;二要明确元素满足的条件;三要根据集合中元素的个数来选择适当的方法表示集合.
跟踪训练3 若集合A={x∈Z|-2≤x≤2},B={y|y=x2+2 000,x∈A},则用列举法表示集合B=________.
考点 集合的表示综合
题点 用适当的方法表示集合
答案 {2 000,2 001,2 004}
解析 由A={x∈Z|-2≤x≤2}={-2,-1,0,1,2},
所以x2∈{0,1,4},x2+2 000的值为2 000,2 001,2 004,所以B={2 000,2 001,2 004}.
命题角度2 新定义的集合
例4 对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn,则在此定义下,集合M={(a,b)|a※b=16}中的元素个数是( )
A.18 B.17 D.16 D.15
考点 集合的表示综合
题点 新定义题
答案 B
解析 因为1+15=16,2+14=16,3+13=16,4+12=16,5+11=16,6+10=16,7+9=16,8+8=16,9+7=16,10+6=16,11+5=16,12+4=16,13+3=16,14+2=16,15+1=16,1×16=16,16×1=16,集合M中的元素是有序数对(a,b),所以集合M中的元素共有17个,故选B.
反思与感悟 命题者以考试说明中的某一知识点为依托,自行定义新概念、新公式、新运算和新法则,做题者应准确理解应用此定义,在新的情况下完成某种推理证明或指定要求.
跟踪训练4 定义集合运算:A※B={t|t=xy,x∈A,y∈B},设A={1,2},B={0,2},则集合A※B的所有元素之和为________.
考点 集合的表示综合
题点 新定义题
答案 6
解析 由题意得t=0,2,4,即A※B={0,2,4},
又0+2+4=6,故集合A※B的所有元素之和为6.
1.下面四个判断,正确的个数是( )
①0∈?;
②{0}是空集;
③是空集;
④{x2+y+1=0}是空集.
A.0 B.1 C.2 D.4
考点 空集的定义、性质及运算
题点 空集的定义
答案 B
解析 只有③正确.
2.一次函数y=x-3与y=-2x的图像的交点组成的集合是( )
A.{1,-2} B.{x=1,y=-2}
C.{(-2,1)} D.{(1,-2)}
考点 用列举法表示集合
题点 用列举法表示集合
答案 D
3.用列举法表示集合{x|x2-2x+1=0}为( )
A.{1,1} B.{1}
C.{x=1} D.{x2-2x+1=0}
考点 集合的表示综合
题点 用另一种方法表示集合
答案 B
4.第一象限的点组成的集合可以表示为( )
A.{(x,y)|xy>0}
B.{(x,y)|xy≥0}
C.{(x,y)|x>0且y>0}
D.{(x,y)|x>0或y>0}
考点 用描述法表示集合
题点 用描述法表示与平面直角坐标系有关的集合
答案 C
5.下列集合不等于由所有奇数构成的集合的是( )
A.{x|x=4k-1,k∈Z}
B.{x|x=2k-1,k∈Z}
C.{x|x=2k+1,k∈Z}
D.{x|x=2k+3,k∈Z}
考点 用描述法表示集合
题点 用描述法表示与奇数有关的整数集合
答案 A
1.在用列举法表示集合时应注意
(1)元素间用分隔号“,”.
(2)元素不重复.
(3)元素无顺序.
(4)列举法可表示有限集,也可以表示无限集.若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示.
2.在用描述法表示集合时应注意
(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合或其他形式.
(2)当题目中用了其他字母来描述元素所具有的属性时,要去伪存真(元素具有怎样的属性),而不能被表面的字母形式所迷惑.