1.认识二元一次方程组
课时数:1课时
学情分析:
学生在七年级上册已学过一元一次方程,学生已经具备列一元一次方程解决实际问题的经验基础,为本节的学习已做好知识储备,估计学生应有能力经过自主探索和交流列出二元一次方程组,解决简单的实际问题.
本节所涉及的实际问题包括:老牛、小马驮包裹问题、公园的门票问题等,这些问题均为全体学生所熟悉的情境,容易被学生接受和理解,从而也容易建立相应的数学模型来解题.
教学重点:
(1)掌握二元一次方程及二元一次方程组的概念,理解它们解的含义;
(2)判断一组数是不是某个二元一次方程组的解.
教学难点:
从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想.
教学过程:
情境引入
1、雄伟的长城是中华民族的象征,长城东起鸭绿江,西达嘉峪关,全长共7300千米,其中东段从鸭绿江到山海关,西段从山海关到嘉峪关,西段比东段长6100千米。你知道长城的东、西段各长多少千米?
(请每个学习小组讨论(讨论2分钟,然后发言).教师注意引导学生设两个未知数,引入新课。)
2、甲乙两个整数和为8,且甲数的2倍比乙数大1,求甲乙两个数。
3、昨天,我们6个人去阅海公园玩,有大人和儿童,买门票一共花了22元。每张成人票5元,每张儿童票3元,你知道我们到底去了几个成人,几个儿童呢?
在这个问题中,可能会有学生认为用一元一次方程也可以解答,我们要肯定学生的做法,并将学生的答案保留下来,放到第二节二元一次方程组解法的学习中去,让学生更有学习的好奇心与积极性.同时告诉学生在某些有两个等量关系的实际问题中,列二元一次方程组比列一元一次方程更快捷、清楚.
目的:通过现实情景再现,让学生体会到方程是刻画现实世界的有效数学模型,培养学生良好的数学应用意识.
设计效果:学生通过前面的情景引入,在老师的引导下,列出关注两个未知数的方程,为后续关于二元一次方程的讨论提供了素材,同时,有趣的情境,也激发了学生学习的兴趣.
新课讲解,练习提高
二元一次方程概念的概括
提请学生思考:上面所列方程有几个未知数?所含未知数的项的次数是多少?从而归纳出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1的方程.教师对概念进行解析,要求学生注意:这个定义有两个要求:
①含有两个未知数;
②所含未知数的项的最高次数是一次.
再呈现一些关于二元一次方程概念的辨析题,进行巩固练习:
1.下列方程有哪些是二元一次方程:
(1),(2),(3),
(4),(5),(6).
2.如果方程是二元一次方程,那么m= ,n= .
(二)二元一次方程组概念的概括
师提请学生思考:上面的方程 中的x含义相同吗?y呢?由于x、y的含义分别相同,因而必同时满足和,我们把这两个方程用大括号联立起来,写成,从而得出二元一次方程组的概念:像这样共含有两个未知数的两个一次方程所组成的一组方程.如:
注意:在方程组中的各方程中的同一个字母必须表示同一个对象.
再呈现一些辨析题,让学生进行巩固练习:
判断下列方程组是否是二元一次方程组:
(1) (2) (3)
(4) (5) (6)
(三)因承上面的情境,得出有关方程的解的概念
1.适合方程吗?呢?呢?你还能找到其他x,y值适合方程吗?
2. 适合方程吗?呢?
3.你能找到一组值x,y同时适合方程和吗?各小组合作完成,各同学分别代入验算,教师巡回参与小组活动,并帮助找到3题的结论.
由学生回答上面3个问题,老师作出结论:
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的解.
如x=6, y=2是方程x+ y =8的一个解,记作 ;同样,也是方程的一个解,同时 又是方程的一个解.
二元一次方程组中各个方程的公共解,叫做二元一次方程组的解.
例如,就是二元一次方程组的解.
然后,同样呈现一些辨析性练习:(投影)
1.下列四组数值中,哪些是二元一次方程的解?
(A) (B) (C) (D)
2.二元一次方程的解有:
……
3.二元一次方程组的解是( )
(A) (B) (C) (D)
4.以为解的二元一次方程组是( )
(A) (B)
(C) (D)
5.二元一次方程的正整数解为 .
6.如果是的解,那么m= ,n= .
7.写出一个以为解的二元一次方程组为 . (答案不唯一)
目的:通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好巩固新知识.
设计效果:通过本环节的讲解与训练,让学生对利用新知识解决一些简单问题有更加明确的认识,同时也尽量让学生明白知识点不是孤立的,需要前后联系,才能更好地处理一些新问题.
课堂小结
1.含有两未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.
2.二元一次方程的解是一个互相关联的两个数值,它有无数个解.
3.含有两个未知数的两个二元一次方程组成的一组方程,叫做二元一次方程组,它的解是两个方程的公共解,是一组确定的值.
目的:引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.
设计效果:本环节虽然用时不多,却是必不可少的教学环节,对学生回顾与整理本节课的知识效果明显.
布置作业:
习题5.1
课后反思:
1.本节课充分体现了从问题情景中抽象数学问题、使用各种数学语言表达问题、建立数学关系式、获得合理的解答、理解并掌握相应的数学知识与技能的有意义的这一变化学习过程.在教学中力求体现“问题情景——建立数学模型——解释、应用与拓展”的模式,使学生在自主探索和合作交流的过程中建立二元一次方程的数学模型,学会逐步掌握基本的数学知识和方法,形成良好的数学思维习惯和应用意识,提高自己解决问题的能力,感受数学创造的乐趣,增进学好数学的信心,获得对数学较全面的体验和理解.
2.通过情境引入,让同学们体会到了生活中的数学无处不在,激发了学生强烈的求知欲望,学生的反应非常积极踊跃,丰富了学生们的情感与态度.充分利用小组合作交流,让同学们自己找出方程中的等量关系,启发同学们自己说出各个定义的理解.在同学们合作做题的时候,老师进一步强调小组合作交流、合理分配时间会取得更好的效果.教学过程各环节紧紧相扣,整个教学过程逻辑思维清晰,问题与问题之间衔接紧密,每一步都为下一步做了很好的铺垫.
PAGE