五年级上册数学教案-5.11 列方程解答实际问题中小括号的应用

文档属性

名称 五年级上册数学教案-5.11 列方程解答实际问题中小括号的应用
格式 zip
文件大小 194.5KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-01-12 07:34:06

图片预览

文档简介

第五单元 简 易 方 程
教 学 设 计
第11课时 列方程解答实际问题中小括号的应用
教学内容
教材第77页例3。
内容简析
例3 借助小括号在方程中的运用,解决实际问题。
教学目标
1.能够找出题中的数量关系,列出方程。
2.掌握ax±ab=c的方程解法技巧,能运用已有的知识解决生活中的实际问题。
3.在自主探究、合作的过程中培养学生的分析、转化及归纳的能力。
4.用数学知识解答生活问题,渗透学以致用的思想意识。
教学重难点
灵活运用ax±ab=c的方程解决实际问题。
教法与学法
1.本课时教学形如ax+ab=c的方程及其应用时,主要是运用转化和对比的教学方法:首先用转化的方法,将同一题转换成两种解法;其次是用对比的方法,找出两种解法之间的联系和区别。
2.本课时学生主要是通过总结、归纳、抽象、概括等方法,掌握乘法分配律在方程中的转化思想。
承前启后链
教学过程
一、情景创设,导入课题
设疑引入:
1.李强买了5本书和5个练习本,每本书的价钱是4.5元,每个练习本的价钱是1.5元,李强一共花了多少元钱?
2.根据学生的回答,引出课题,今天我们就用方程解法来解决这样的问题。(板书课题)(详见配套课件部分)
【品析:这种导入方式,与课本例题内容贴切,可直接过渡到教材例题中。】
情景导入:
师:秋天是收获的季节,天气慢慢变凉而且比较干燥,同学们要多吃水果。你们都喜欢吃什么水果呢?(学生自由发言)
师:今天我们就继续用方程解决生活中的实际问题。(板书课题)
【品析:从学生喜闻乐见的事物入手激发学生的学习兴趣,让学生充分体会到数学来源于生活,从而调动学生学习数学的积极性。】
复习导入:
只列方程不计算。
1.现有公鸡x只,母鸡30只,母鸡比公鸡只数的2倍多6只。
2.学校买了5套桌椅,共花650元,每套桌椅多少元?
师:用方程解应用题应该注意什么?今天我们继续来学习用方程解决应用题。(板书课题)
【品析:在学习新课前,进行两个准备性的训练,为新课做好铺垫,为进一步学习做好准备。】
二、师生合作,探究新知
◎引领学生分析教材第77页例3中的主题图片,提取已知信息,并找出待解决的问题。
(1)整理从中获得的信息:
①苹果和梨各要2 kg;
②梨每千克2.8元;
③一共花了10.4元。
(2)提出的问题。
苹果每千克多少元?
◎自主学习,分组讨论,探究解题方法。
根据学习经验,学生可以自己列出对应上面问题的等量关系:苹果的总价+梨的总价=总价钱。
虽然学生现在还没有学习形如ax+ab=c的方程及其应用,但是经过回顾分析,可以通过其他方法解答出来。此时把问题抛给学生,让他们分组讨论,自主探究结果。通常会出现下面几种等量关系。(详见配套课件部分)
  【品析:本环节中借助单价、总价和数量之间的关系列出符合题意的关系式,明白两种关系式的算理,以及实际生活中的问题与数学知识的联系,实际教学中要有的放矢地引导,同时在学生自主学习、分组讨论时要及时提示,让学生自己体会总价、数量和单价三者之间的相互转换关系。】
◎顺承关系式,研学列方程解答。
  在总结完关系式的基础上,教师抛出问题:对于这道题的关系式,我们已经知道了,那么怎样列式解答呢?
  生1:可以按照关系式代数列出方程。
  生2:可以先找出要求的问题,把它看成未知数,再列出方程。
  ……
  师:要求的问题是什么,怎样列式呢?
  学生经过简单的交流讨论后,可以得出结论:设苹果每千克的价钱为x元,有了例3找到的关系式的理论基础后,引领学生自主列式解答,可以先分小组探究解答方法,然后选派学生代表介绍自己的解答方法。
  在学生自主探究的过程中适时引导学生思考以下问题:
问题1:例题中要求的是什么?已知条件是什么?   解:设苹果每千克x元。    2x+2.8×2=10.4 (2x+2.8×2)÷2=10.4÷2 x+2.8=5.2 x+2.8-2.8=5.2-2.8 x=2.4 2(x+2.8)=10.4 2x+5.6=10.4
2x+5.6-5.6=10.4-5.6 2x=4.8 x=2.4   问题2:两个算式在解法上有什么不同?两个算式之间有什么联系? 【品析:从等量关系式到列方程的转换,是一个解决数学实际问题建构的过程,这个学习的过程,不仅仅是记住一个关系式和一种解题方法,更重要的是要引导学生体会实际问题与数学知识的联系,在整个过程中,体会乘法运算定律在方程中的应用,以及确定列方程的依据。本环节中主要的教法是转化和迁移类推,主要的学法是讨论、探究和比较。】
三、反馈质疑,学有所得
  在学习完例3的基础上,引领学生及时消化吸收,请同桌之间互相叙述解题方法。然后教师提出质疑问题,引领学生在解决问题的过程中,学会系统整理。
  质疑:在解答例3时两种不同的解法有什么样的关系?
  学生讨论后得出结论:两种算法都是求同样的问题,虽然计算方法不同,但算理是一样的,两个算式实际上就是乘法分配律的相互转换形式。
【品析:本环节设置在本课新授知识完成之后,由于用方程解决较复杂的实际问题有一定的难度,对于学生而言,有些抽象,所以真正的明白算理,是在本环节质疑答疑之后,真正实现了学有所得。】
四、巩固应用,内化提升
  完成教材第77页“做一做”中的题目。
  根据题意分析,成人票每张4元,儿童票不知道多少钱,可以把儿童票看成未知数,用x来表示,买4张票一共花了11元,所以2张儿童票和2张成人票加在一起正好是11元,根据关系式就可以列出方程了。
【参考答案】
解:设儿童票每张x元。
2x+4×2=11
x=1.5
五、课末小结,融会贯通
  本节课,你学会了哪些知识?还有什么是不明白的呢?
在师生共同总结之后,简单回顾解形如ax+ab=c的方程的解法及其应用。然后衔接下节课的学习任务,给大家留一个思考的话题:
怎样用乘法运算定律解决稍复杂的实际问题。
六、教海拾遗,反思提升
回味课堂,发现亮点之处:质疑和讨论使学生的学习进入了二次消化吸收的过程,这次内化把用方程解决稍复杂的实际问题的步骤真正掌握了。
反思过程,有待改进之处:学生能很快找出要求的量,也能根据等量关系列出方程,但个别同学在应用乘法分配律列含有小括号的方程时会出现错误,所以在后面的教学中,应根据不同学生对不同知识点的接受情况,采取不同的教学措施,真正做到因材施教。
我的反思:
板书设计
列方程解答实际问题中小括号的应用