2020年冀教新版九年级上册数学《第23章 数据分析》单元测试卷
一.选择题(共10小题)
1.为了了解某校300名初三学生的睡眠时间,从中抽取30名学生进行调查,在这个问题中,下列说法正确的是( )
A.300名学生是总体
B.300是众数
C.30名学生是抽取的一个样本
D.30是样本的容量
2.为了了解2016年扬州市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩.下列说法正确的是( )
A.2016年扬州市九年级学生是总体
B.每一名九年级学生是个体
C.1000名九年级学生是总体的一个样本
D.样本容量是1000
3.为了了解我市50000名学生参加初中毕业考试数学成绩情况,从中抽取了1000名考生的成绩进行统计.下列说法:
①这50000名学生的数学考试成绩的全体是总体;
②每个考生是个体;
③1000名考生是总体的一个样本;
④样本容量是1000.
其中说法正确的有( )
A.4个 B.3个 C.2个 D.1个
4.在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻.据此,估计该镇看中央电视台早间新闻的约有( )
A.2.5万人 B.2万人 C.1.5万人 D.1万人
5.青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕捞20只青蛙,作上标记后放回池塘,经过一段时间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,请你估计一下这个池塘里有多少只青蛙?( )
A.100只 B.150只 C.180只 D.200只
6.有一组数据:2,5,5,6,7,这组数据的平均数为( )
A.3 B.4 C.5 D.6
7.为了满足顾客的需求,某商场将5kg奶糖,3kg酥心糖和2kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克( )
A.25元 B.28.5元 C.29元 D.34.5元
8.已知数据:2,1,4,6,9,8,6,1,则这组数据的中位数是( )
A.4 B.6 C.5 D.4和6
9.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )
劳动时间(小时) 3 3.5 4 4.5
人 数 1 1 3 2
A.中位数是4,众数是4 B.中位数是3.5,众数是4
C.平均数是3.5,众数是4 D.平均数是4,众数是3.5
10.2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:
队员1 队员2 队员3 队员4
平均数(秒) 51 50 51 50
方差s2(秒2) 3.5 3.5 14.5 15.5
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )
A.队员1 B.队员2 C.队员3 D.队员4
二.填空题(共8小题)
11.为了调查滨湖区八年级学生期末考试数学试卷答题情况,从全区的数学试卷中随机抽取了10本没拆封的试卷作为样本,每本含试卷30份,这次抽样调查的样本容量是 .
12.为了了解我市6000名学生参加初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,样本容量是 .
13.某校九年级的一次数学测验中,成绩在80~84分之间的同学有84人,在频率分布表中的频率为0.35,则全校九年级共有学生 人.
14.某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图统计表.根据表中数据,估计该校1300名学生一周的课外阅读时间不少于7小时的人数为 人.
时间(小时) 4 5 6 7 8
人数(人) 3 9 18 15 5
15.若一组数据x1,x2,…,xn的平均数是a,方差是b,则4x1﹣3,4x2﹣3,…,4xn﹣3的平均数是 ,方差是 .
16.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:如果公司认为,作为公关人员面试的成绩比笔试的成绩更重要,并分别赋予它们6和4的权,根据四人各自的平均成绩,公司将录取 .
候选人 甲 乙 丙 丁
测试成绩(百分制) 面试 86 92 90 83
笔试 90 83 83 92
17.某同学在使用计算器求20个数的时候,将88误输入为8,那么由此求出的平均数与实际平均数的差为 .
18.区关工委组织一次少年轮滑比赛,各年龄组的参赛人数如下表所示:
年龄组 13岁 14岁 15岁 16岁
参赛人数 5 19 12 14
则全体参赛选手年龄的中位数是 岁.
三.解答题(共8小题)
19.请指出下列抽样调查的总体、个体、样本、样本容量分别是什么?
(1)为了了解某种家用空调工作1小时的用电量,调查10台该种空调每台工作1小时的用电量;
(2)为了了解初二年级270名学生的视力情况,从中抽取50名学生进行视力检查.
20.某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):
度数 9 10 11
天数 3 1 1
(1)求这5天的用电量的平均数;
(2)求这5天用电量的众数、中位数;
(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.
21.据省环保网发布的消息,吉首市空气质量评价连续两年居全省14个省辖市城市之最,下表是吉首市2014年5月份前10天的空气质量指数统计表
(一)2014年5月1日~10日空气质量指数(AQI)情况
日期 1日 2日 3日 4日 5日 6日 7日 8日 9日 10日
空气质量指数(AQI) 28 38 94 53 63 149 53 90 84 35
(二)空气质量污染指数标准(AQI)
污染指数 等级
0~50 优
51~100 良
101~150 轻微污染
151~200 轻度污染
(1)请你计算这10天吉首市空气质量指数的平均数,并据此判断这10天吉首市空气质量平均情况属于哪个等级;(用科学计算器计算或笔算,结果保留整数)
(2)按规定,当空气质量指数AQI≤100时,空气质量才算“达标”,请你根据表(一)和表(二)所提供的信息,估计今年(365天)吉首市空气质量“达标”的天数.(结果保留整数)
22.在对全市初中生进行的体质健康测试中,青少年体质研究中心随机抽取的10名学生的坐位体前屈的成绩(单位:厘米)如下:
11.2,10.5,11.4,10.2,11.4,11.4,11.2,9.5,12.0,10.2
(1)通过计算,样本数据(10名学生的成绩)的平均数是10.9,中位数是 ,众数是 ;
(2)一个学生的成绩是11.3厘米,你认为他的成绩如何?说明理由;
(3)研究中心确定了一个标准成绩,等于或大于这个成绩的学生该项素质被评定为“优秀”等级,如果全市有一半左右的学生能够达到“优秀”等级,你认为标准成绩定为多少?说明理由.
23.八年级(1)班数学活动选出甲、乙两组各10名学生,进行趣味数学抢答比赛,共10道题,答对8题(含8题)以上为优秀,答对题数统计如下:
答对题数 5 6 7 8 9 10 平均数 中位数 众数 方差 优秀率
甲组 1 0 1 5 2 1 8 8 8 1.6 80%
乙组 0 0 4 3 2 1
请你完成上表,并根据所学的统计知识,从不同方面评价甲、乙两组选手的成绩.
24.某公司招聘一名公关人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:
面试 笔试
成绩 评委1 评委2 评委3 92
88 90 86
(1)请计算小王面试平均成绩;
(2)如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩.
25.甲、乙、丙三个家电厂家在广告中都声称,他们的某种电子产品在正常情况下的使用寿命都是8年,经质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年)
甲厂:4,5,5,5,5,7,9,12,13,15
乙厂:6,6,8,8,8,9,10,12,14,15
丙厂:4,4,4,6,7,9,13,15,16,16
请回答下列问题:
(1)分别求出以上三组数据的平均数、众数、中位数;
(2)这三个厂家的销售广告分别利用了哪一种表示集中趋势的特征数;
(3)如果你是顾客,宜选购哪家工厂的产品?为什么?
26.某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:
17 18 16 13 24 15 28 26 18 19
22 17 16 19 32 30 16 14 15 26
15 32 23 17 15 15 28 28 16 19
频数分布表
组别 一 二 三 四 五 六 七
销售额 13≤x<16 16≤x<19 19≤x<22 22≤x<25 25≤x<28 28≤x<31 31≤x<34
频数 7 9 3 a 2 b 2
数据分析表
平均数 众数 中位数
20.3 c 18
请根据以上信息解答下列问题:
(1)填空:a= ,b= ,c= ;
(2)若将月销售额不低于25万元确定为销售目标,则有 位营业员拿不到奖励;
(3)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.
2020年冀教新版九年级上册数学《第23章 数据分析》单元测试卷
参考答案与试题解析
一.选择题(共10小题)
1.为了了解某校300名初三学生的睡眠时间,从中抽取30名学生进行调查,在这个问题中,下列说法正确的是( )
A.300名学生是总体
B.300是众数
C.30名学生是抽取的一个样本
D.30是样本的容量
【分析】样本的容量指一个样本所含个体的数目.即抽取学生的数量是样本的容量.
【解答】解:本题中总体是某校300名初三学生的睡眠时间,样本是抽取的30名学生的睡眠时间,故样本的容量是30.所以A,B,C都错,D对.
故选:D.
【点评】掌握总体,样本,样本的容量以及众数的概念.
2.为了了解2016年扬州市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩.下列说法正确的是( )
A.2016年扬州市九年级学生是总体
B.每一名九年级学生是个体
C.1000名九年级学生是总体的一个样本
D.样本容量是1000
【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【解答】解:A、2016年扬州市九年级学生学业水平考试的数学成绩是总体,故A不符合题意;
B、每名学生学业水平考试的数学成绩是个体,故B不符合题意;
C、从中随机抽取了1000名学生的数学成绩是一个样本,故C不符合题意;
D、样本容量是1000,故D符合题意;
故选:D.
【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
3.为了了解我市50000名学生参加初中毕业考试数学成绩情况,从中抽取了1000名考生的成绩进行统计.下列说法:
①这50000名学生的数学考试成绩的全体是总体;
②每个考生是个体;
③1000名考生是总体的一个样本;
④样本容量是1000.
其中说法正确的有( )
A.4个 B.3个 C.2个 D.1个
【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【解答】解:①这50000名学生的数学考试成绩的全体是总体,说法正确;
②每个考生是个体,说法错误,应该是每个考生的数学成绩是个体;
③1000名考生是总体的一个样本,说法错误,应是1000名考生的数学成绩是总体的一个样本;
④样本容量是1000,说法正确;
正确的说法共2个,
故选:C.
【点评】此题主要考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
4.在一个有15万人的小镇,随机调查了3000人,其中有300人看中央电视台的早间新闻.据此,估计该镇看中央电视台早间新闻的约有( )
A.2.5万人 B.2万人 C.1.5万人 D.1万人
【分析】求得调查样本的看早间新闻的百分比,然后乘以该镇总人数即可.
【解答】解:该镇看中央电视台早间新闻的约有15×=1.5万,
故选:C.
【点评】本题考查了用样本估计总体的知识,解题的关键是求得样本中观看的百分比,难度不大.
5.青蛙是我们人类的朋友,为了了解某池塘里青蛙的数量,先从池塘里捕捞20只青蛙,作上标记后放回池塘,经过一段时间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,请你估计一下这个池塘里有多少只青蛙?( )
A.100只 B.150只 C.180只 D.200只
【分析】从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,即在样本中有标记的所占比例为,而在整体中有标记的共有20只,根据所占比例即可解答.
【解答】解:∵从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,
∴在样本中有标记的所占比例为,
∴池塘里青蛙的总数为20÷=200.
故选:D.
【点评】此题主要考查了用样本去估计总体,统计的思想就是用样本的信息来估计总体的信息.
6.有一组数据:2,5,5,6,7,这组数据的平均数为( )
A.3 B.4 C.5 D.6
【分析】把给出的这5个数据加起来,再除以数据个数5,就是此组数据的平均数.
【解答】解:(2+5+5+6+7)÷5
=25÷5
=5
答:这组数据的平均数是5.
故选:C.
【点评】此题主要考查了平均数的意义与求解方法,关键是把给出的这5个数据加起来,再除以数据个数5.
7.为了满足顾客的需求,某商场将5kg奶糖,3kg酥心糖和2kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克( )
A.25元 B.28.5元 C.29元 D.34.5元
【分析】先求出买5kg奶糖,3kg酥心糖和2kg水果糖的总钱数,再除以总的千克数,即可得出混合后什锦糖的售价.
【解答】解:根据题意得:
(40×5+20×3+15×2)÷(5+3+2)=29(元),
答:混合后什锦糖的售价应为每千克29元.
故选:C.
【点评】此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,是一道基础题.
8.已知数据:2,1,4,6,9,8,6,1,则这组数据的中位数是( )
A.4 B.6 C.5 D.4和6
【分析】要求中位数,是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数的平均数.
【解答】解:从小到大排列此数据为:1、1、2、4、6、6、8、9,第4位和第5位分别是4和6,平均数是5,则这组数据的中位数是5.
故选:C.
【点评】此题考查了中位数;注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.
9.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )
劳动时间(小时) 3 3.5 4 4.5
人 数 1 1 3 2
A.中位数是4,众数是4 B.中位数是3.5,众数是4
C.平均数是3.5,众数是4 D.平均数是4,众数是3.5
【分析】根据众数和中位数的概念求解.
【解答】解:这组数据中4出现的次数最多,众数为4,
∵共有7个人,
∴第4个人的劳动时间为中位数,
所以中位数为4,
故选:A.
【点评】本题考查众数与中位数的意义,一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.
10.2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:
队员1 队员2 队员3 队员4
平均数(秒) 51 50 51 50
方差s2(秒2) 3.5 3.5 14.5 15.5
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )
A.队员1 B.队员2 C.队员3 D.队员4
【分析】据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【解答】解:因为队员1和2的方差最小,但队员2平均数最小,所以成绩好,所以队员2成绩好又发挥稳定.
故选:B.
【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
二.填空题(共8小题)
11.为了调查滨湖区八年级学生期末考试数学试卷答题情况,从全区的数学试卷中随机抽取了10本没拆封的试卷作为样本,每本含试卷30份,这次抽样调查的样本容量是 300 .
【分析】根据样本容量:一个样本包括的个体数量叫做样本容量的概念可直接得到答案.
【解答】从全区的数学试卷中随机抽取了10本没拆封的试卷作为样本,每本含试卷30份,这次抽样调查的样本容量是10×30=300,
故答案为:300.
【点评】此题主要考查了样本容量,关键是掌握样本容量的概念,样本容量没有单位.
12.为了了解我市6000名学生参加初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,样本容量是 200 .
【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【解答】解:样本容量是200.
故答案为:200.
【点评】本题考查的是确定总体、个体和样本.解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”
13.某校九年级的一次数学测验中,成绩在80~84分之间的同学有84人,在频率分布表中的频率为0.35,则全校九年级共有学生 240 人.
【分析】根据频率=的关系得:即共有学生=240人.
【解答】解:由题意得,84÷0.35=240(人).
【点评】此题考查频率的计算:频率=.
14.某校为了解全校1300名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图统计表.根据表中数据,估计该校1300名学生一周的课外阅读时间不少于7小时的人数为 520 人.
时间(小时) 4 5 6 7 8
人数(人) 3 9 18 15 5
【分析】用所有学生数乘以课外阅读时间不少于7小时的人数所占的百分比即可.
【解答】解:该校1300名学生一周的课外阅读时间不少于7小时的人数是1300×=520人.
故答案为:520.
【点评】本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于7小时的人数所占的百分比.
15.若一组数据x1,x2,…,xn的平均数是a,方差是b,则4x1﹣3,4x2﹣3,…,4xn﹣3的平均数是 4a﹣3 ,方差是 16b .
【分析】根据标准差的概念计算.先表示出原数据的平均数,方差;然后表示新数据的平均数和方差,通过代数式的变形即可求得新数据的平均数和方差.
【解答】解:∵x1、x2…xn的平均数是a,
∴(x1、x2…xn)÷n=a
∴(4x1﹣3,4x2﹣3…4xn﹣3)÷4=4×a﹣3=4a﹣3,
∵x1、x2…xn的方差是b,
∴4x1﹣3,4x2﹣3…4xn﹣3的方差是4×4×b=16b.
答案为:4a﹣3;16b.
【点评】本题考查平均数和方差的变换特点,若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.
16.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如表:如果公司认为,作为公关人员面试的成绩比笔试的成绩更重要,并分别赋予它们6和4的权,根据四人各自的平均成绩,公司将录取 乙 .
候选人 甲 乙 丙 丁
测试成绩(百分制) 面试 86 92 90 83
笔试 90 83 83 92
【分析】首先根据加权平均数的含义和求法,分别求出三人的平均成绩各是多少;然后比较大小,判断出谁的平均成绩最高,即可判断出谁将被公司录取.
【解答】解:甲的平均成绩=(90×4+86×6)÷10=876÷10=87.6(分)
乙的平均成绩=(83×4+92×6)÷10=884÷10=88.4(分)
丙的平均成绩=(83×4+90×6)÷10=872÷10=87.2(分)
丁的平均成绩=(92×4+83×6)÷10=866÷10=86.6(分)
∵88.4>87.6>87.2>86.6,
∴乙的平均成绩最高,
∴公司将录取乙.
故答案为:乙.
【点评】此题主要考查了加权平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.
17.某同学在使用计算器求20个数的时候,将88误输入为8,那么由此求出的平均数与实际平均数的差为 4 .
【分析】运用平均数的意义求解.两组数据的总和相差88﹣8=80,则它们的平均数相差80÷20.
【解答】解:由题意知,将88误输入为8,则总和将少加(88﹣8)=80,所以算出的平均数比实际的平均数少80÷20=4.
故答案为:4.
【点评】本题考查了平均数的概念.熟记公式是解决本题的关键.
18.区关工委组织一次少年轮滑比赛,各年龄组的参赛人数如下表所示:
年龄组 13岁 14岁 15岁 16岁
参赛人数 5 19 12 14
则全体参赛选手年龄的中位数是 15 岁.
【分析】首先确定本次滑轮比赛的参赛人数,根据人数的奇偶性确定中位数落在那个年龄段,写出这个年龄即可.
【解答】解:本次比赛一共有:5+19+12+14=50人,
∴中位数是第25和第26人的年龄的平均数,
∵第25人和第26人的年龄均为15岁,
∴全体参赛选手的年龄的中位数为15岁.
故答案为:15岁.
【点评】本题考查了中位数的确定,确定中位数的关键是确定数据的个数和排序,显然本题已经排序.
三.解答题(共8小题)
19.请指出下列抽样调查的总体、个体、样本、样本容量分别是什么?
(1)为了了解某种家用空调工作1小时的用电量,调查10台该种空调每台工作1小时的用电量;
(2)为了了解初二年级270名学生的视力情况,从中抽取50名学生进行视力检查.
【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【解答】解:(1)总体:该种家用空调工作1小时的用电量;个体:每一台该种家用空调工作1小时的用电量;样本:10台该种家用空调每台工作1小时的用电量;样本容量:10;
(2)总体:初二年级270名学生的视力情况;个体:每一名学生的视力情况;样本:抽取的50名学生的视力情况;样本容量:50.
【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.
20.某学校抽查了某班级某月5天的用电量,数据如下表(单位:度):
度数 9 10 11
天数 3 1 1
(1)求这5天的用电量的平均数;
(2)求这5天用电量的众数、中位数;
(3)学校共有36个班级,若该月按22天计,试估计该校该月的总用电量.
【分析】(1)用加权平均数的计算方法计算平均用电量即可;
(2)分别利用众数、中位数及极差的定义求解即可;
(3)用班级数乘以日平均用电量乘以天数即可求得总用电量.
【解答】解:(1)平均用电量为:(9×3+10×1+11×1)÷5=9.6度;
(2)9度出现了3次,最多,故众数为9度;
第3天的用电量是9度,故中位数为9度;
(3)总用电量为22×9.6×36=7603.2度.
【点评】本题考查了统计的有关概念及用样本估计总体的知识,题目相对比较简单,属于基础题,解题时注意有关的统计量都应带单位.
21.据省环保网发布的消息,吉首市空气质量评价连续两年居全省14个省辖市城市之最,下表是吉首市2014年5月份前10天的空气质量指数统计表
(一)2014年5月1日~10日空气质量指数(AQI)情况
日期 1日 2日 3日 4日 5日 6日 7日 8日 9日 10日
空气质量指数(AQI) 28 38 94 53 63 149 53 90 84 35
(二)空气质量污染指数标准(AQI)
污染指数 等级
0~50 优
51~100 良
101~150 轻微污染
151~200 轻度污染
(1)请你计算这10天吉首市空气质量指数的平均数,并据此判断这10天吉首市空气质量平均情况属于哪个等级;(用科学计算器计算或笔算,结果保留整数)
(2)按规定,当空气质量指数AQI≤100时,空气质量才算“达标”,请你根据表(一)和表(二)所提供的信息,估计今年(365天)吉首市空气质量“达标”的天数.(结果保留整数)
【分析】(1)求出这10天的空气质量平均平均数,再根据空气质量污染指数标准找出等级即可;
(2)找出这10天空气质量“达标”的天数,求出占的比列,再乘以365即可.
【解答】解:(1)=68.7≈69,
69在51~100之间,所以吉首市空气质量平均情况属于良;
(2)∵这10天空气质量“达标”的天数为9天,今年(365天)吉首市空气质量“达标”的天数为=328.5≈329(天),
答:估计今年(365天)吉首市空气质量“达标”的天数为329天.
【点评】本题考查从统计表中获取信息的能力,及统计中用样本估计总体的思想.
22.在对全市初中生进行的体质健康测试中,青少年体质研究中心随机抽取的10名学生的坐位体前屈的成绩(单位:厘米)如下:
11.2,10.5,11.4,10.2,11.4,11.4,11.2,9.5,12.0,10.2
(1)通过计算,样本数据(10名学生的成绩)的平均数是10.9,中位数是 11.2 ,众数是 11.4 ;
(2)一个学生的成绩是11.3厘米,你认为他的成绩如何?说明理由;
(3)研究中心确定了一个标准成绩,等于或大于这个成绩的学生该项素质被评定为“优秀”等级,如果全市有一半左右的学生能够达到“优秀”等级,你认为标准成绩定为多少?说明理由.
【分析】(1)利用中位数、众数的定义进行解答即可;
(2)将其成绩与中位数比较即可得到答案;
(3)用中位数作为一个标准即可衡量是否有一半学生达到优秀等级.
【解答】解:(1)中位数是11.2,众数是11.4.
(2)方法1:根据(1)中得到的样本数据的结论,可以估计,在这次坐位体前屈的成绩测试中,全市大约有一半学生的成绩大于11.2厘米,有一半学生的成绩小于11.2厘米,这位学生的成绩是11.3厘米,大于中位数11.2厘米,可以推测他的成绩比一半以上学生的成绩好.
方法2:根据(1)中得到的样本数据的结论,可以估计,在这次坐位体前屈的成绩测试中,全市学生的平均成绩是10.9厘米,这位学生的成绩是11.3厘米,大于平均成绩10.9厘米,可以推测他的成绩比全市学生的平均成绩好.
(3)如果全市有一半左右的学生评定为“优秀”等级,标准成绩应定为11.2厘米(中位数).因为从样本情况看,成绩在11.2厘米以上(含11.2厘米)的学生占总人数的一半左右.可以估计,如果标准成绩定为11.2厘米,全市将有一半左右的学生能够评定为“优秀”等级.
【点评】本题考查了加权平均数、中位数及众数的定义,属于统计中的基本题型,需重点掌握.
23.八年级(1)班数学活动选出甲、乙两组各10名学生,进行趣味数学抢答比赛,共10道题,答对8题(含8题)以上为优秀,答对题数统计如下:
答对题数 5 6 7 8 9 10 平均数 中位数 众数 方差 优秀率
甲组 1 0 1 5 2 1 8 8 8 1.6 80%
乙组 0 0 4 3 2 1
请你完成上表,并根据所学的统计知识,从不同方面评价甲、乙两组选手的成绩.
【分析】要求平均数只要求出数据之和再除以总个数即可;对于中位数,把表中数据按从小到大的顺序排列,所以只要找出最中间的一个数(或最中间的两个数)即可;对于众数可由表中出现次数最多的数据写出.
【解答】解:乙的平均数==8;
乙的中位数是=8;乙的众数是7;
乙的方差==1;
乙的优秀率==60%.
平均数 中位数 众数 方差 优秀率
8 8 8 1.6 80%
8 8 7 1.0 60%
从平均数、中位数看都是8题,成绩相等;
从众数看,甲组8题乙组7题,甲比乙好;
从方差看,甲成绩差距大,乙相对稳定;
从优秀率看,甲比乙好.
【点评】正确理解中位数、众数及平均数的概念,是解决本题的关键.同时会运用这些统计量分析问题.
24.某公司招聘一名公关人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:
面试 笔试
成绩 评委1 评委2 评委3 92
88 90 86
(1)请计算小王面试平均成绩;
(2)如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩.
【分析】(1)要求小王面试平均成绩只要将所有的成绩加起来再除以3即可;
(2)根据加权平均数的含义和求法,求出小王的最终成绩即可.
【解答】解:(1)=88(分).
故小王面试平均成绩为88分;
(2)
=
=89.6(分).
故小王的最终成绩为89.6分.
【点评】此题主要考查了加权平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.同时考查了算术平均数的含义和求法,要熟练掌握,解答此题的关键是要明确:算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.
25.甲、乙、丙三个家电厂家在广告中都声称,他们的某种电子产品在正常情况下的使用寿命都是8年,经质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年)
甲厂:4,5,5,5,5,7,9,12,13,15
乙厂:6,6,8,8,8,9,10,12,14,15
丙厂:4,4,4,6,7,9,13,15,16,16
请回答下列问题:
(1)分别求出以上三组数据的平均数、众数、中位数;
(2)这三个厂家的销售广告分别利用了哪一种表示集中趋势的特征数;
(3)如果你是顾客,宜选购哪家工厂的产品?为什么?
【分析】(1)平均数就是把这组数据加起来的和除以这组数据的总数,众数就是一堆数中出现次数最多的数,中位数,就是一组数按从小到大的顺序排列,中间位置的那个数,如果有偶数个数,那就是中间的两个数的平均数;
(2)一组数据的平均数、众数、中位数从不同角度表示这种数据集中趋势.
由(1)的结果容易回答(2),甲厂、乙厂、丙厂,分别利用了平均数、众数、中位数进行广告推销,顾客在选购产品时,一般以平均数为依据.
(3)根据平均数大的进行选择.
【解答】解:(1)甲厂:平均数为(4+5+5+5+5+7+9+12+13+15)=8,众数为5,中位数为6;
乙厂:平均数为(6+6+8+8+8+9+10+12+14+15)=9.6,众数为8,中位数为8.5;
丙厂:平均数为(4+4+4+6+7+9+13+15+16+16)=9.4,众数为4,中位数为8;
(2)甲厂用的是平均数,乙厂用的是众数,丙厂用的是中位数;
(3)平均数:乙大于丙大于甲;众数:乙大于甲大于丙;中位数:乙大于丙大于甲,顾客在选购产品时,一般以平均数为依据,选平均数大的厂家的产品,
因此应选乙厂的产品.
【点评】本题是平均数、众数、中位数在实际生活中的应用,选取以哪个数据为主要结合它们的定义来考虑.
26.某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:
17 18 16 13 24 15 28 26 18 19
22 17 16 19 32 30 16 14 15 26
15 32 23 17 15 15 28 28 16 19
频数分布表
组别 一 二 三 四 五 六 七
销售额 13≤x<16 16≤x<19 19≤x<22 22≤x<25 25≤x<28 28≤x<31 31≤x<34
频数 7 9 3 a 2 b 2
数据分析表
平均数 众数 中位数
20.3 c 18
请根据以上信息解答下列问题:
(1)填空:a= 3 ,b= 4 ,c= 15 ;
(2)若将月销售额不低于25万元确定为销售目标,则有 22 位营业员拿不到奖励;
(3)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.
【分析】(1)从表中数出落在22≤x<25和28≤x<31范围内的数据个数得到a、b的值,利用众数定义确定c的值;
(2)利用频数分布表,后面三组的频数和为获得奖励的营业员的数量;
(3)利用中位数的意义进行回答.
【解答】解:(1)在22≤x<25范围内的数据有3个,在28≤x<31范围内的数据有4个,
15出现的次数最大,则众数为15;
故答案为:3,4,15;
(2)月销售额不低于25万元为后面三组数据,即有8位营业员获得奖励,
则拿不到奖励的有22人;
故答案为:22;
(3)想让一半左右的营业员都能达到销售目标,我认为月销售额定为18万合适.
因为中位数为18,即大于18与小于18的人数一样多,
所以月销售额定为18万,有一半左右的营业员能达到销售目标.
【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了样本估计整体、平均数和中位数.