数轴 教学设计
教学目标
知识技能掌握数轴的三要素,能正确画出数轴;能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.
数学思考 使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识;对学生渗透数形结合的思想方法.
解决问题 能够准确画出数轴,在数轴上表示出相应的有理数以及在数轴上读出点所表示的有理数.
情感态度 使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点.
教学重难点
重点 正确掌握数轴画法和用数轴上的点表示有理数.
难点 有理数和数轴上的点的对应关系.
教学过程
一、创设情景,引入本节课所研究的课题
教师活动设计:
请大家看,这是一支温度计,它的用途大家是知道的.但是你会读温度计吗?请同学们读出此时温度计所显示的温度(22度).这样看来,液面所在的刻度就表示此时的温度.这说明温度计上的刻度与一些有理数建立了对应的关系,也就是说温度计上的每一个刻度都表示一个有理数.
在一条东西向的马路上,有一个汽车站,汽车站东3?m和7.5?m处分别有一棵柳树和一棵杨树,汽车站西3?m和4.8?m处分别有一棵槐树和一根电线杆,试画图表示这一情境.
学生活动设计:
思考:怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(方向、距离)?
象这种生活中的例子,同学还能列举出来吗?(收音机的标尺、超级解霸上的标尺等)我们能否利用一个类似于温度计图形,用它的刻度(也就是点)来表示所有的有理数呢?这就是我们今天要一起研究的——数轴.
二、探索新知、讲授新课
问题1:观察温度计的刻度规律,你能发现什么?
学生观察温度计,从温度计上发现:刻度有正有负也有0,结合有理数包含正数、零、负数的特点,类比一条直线在什么样的条件下才能成为数轴,于是:因为有零,就必须在直线上取一点,用这个点表示零.(如图1)我们把这个点叫做原点,用大写字母O表示.由温度计的刻度规律可知:原点的一侧表示正数,另一侧表示负数.因而我们就规定原点的其中一侧为正方向,那么另一侧就为负方向.习惯上,当直线水平放置时,原点右方为正方向,原点的左方为负方向.正方向的一侧我们用箭头表示.(如图2)现在同学们来猜想一下,正有理数应该在图2的哪一个区域?负有理数呢??
????知道正数在原点的右边,那么我们用多长来表示+1呢?怎么办?我们需要规定一个单位长度.(如图3)一旦表示1的点确定了,表示其他的有理数的点就好确定了.我想请同学们举例说明其他有理数点的确定.(利用成倍的关系)
这样能用来表示全体有理数的图形我们就找到了.我们把这种图形叫做数轴.现在我请同学们归纳一下数轴有哪几个特点?(原点、正方向、单位长度)于是:
规定了原点、正方向和单位长度的直线叫做数轴
归纳数轴的规范画法:
1.?三要素:原点、正方向和单位长度;
2.?刻度要在直线上,且是细短线;数字在下,字母在上.
三、动手操作、感受数轴的画法、巩固对数轴的认识.
问题2:?尝试解决下列问题
1.?动手操作,画数轴.
教师活动设计:现在每一位同学都画一个数轴,根据你所画的数轴提出你的问题.
学生活动设计:学生动手画数轴,在画的过程中可能有诸多问题,比如:数轴一定是水平放置的吗?原点一定在最中间吗?单位长度究竟是什么样的一个长度?数轴可以画为射线吗?然后学生进行交流,得到数轴规范的画法.
2?.判断下列图形哪些是数轴?
四、解决问题、拓展创新
了解数轴不是目的,我们应该掌握两个方面的能力:将已知数在数轴上表示出来;说出数轴上已知点表示的数.
注意:用数轴上的点表示有理数(正数在数轴的右边,负数在左边,0用原点表示);所有的有理数都可以用数轴上的点来表示,但是数轴上的点并不全是有理数.下面我们通过两个例题锻炼我们的能力.
问题3:?根据对数轴的理解,解决下列问题
1.画出一个单位长度是1厘米的数轴,并用刻度尺画出表示下列各数的点:
-1.5、0、2、-2、2.5
学生活动设计:先考虑在原点的哪一侧,然后看距原点的距离是单位长度的倍数.
〔解答〕如图
课后小结
小结:
1.数轴的三要素:原点单位长度正方向
????2.单位长度的确定方式
课后习题
1、教科书,练习:第1、2题
2、补充练习:
(1)画一条数轴,并表示出如下各点:
±0.5,±0.1,±0.75.
(2)画一条数轴,并表示出如下各点:
?????1000,5000,—2000.
(3)在数轴上标出到原点的距离小于3的整数.
(4)在数轴上标出—5和+5之间的所有整数.