人教版九年级数学上册第22章:二次函数压轴专题主讲练

文档属性

名称 人教版九年级数学上册第22章:二次函数压轴专题主讲练
格式 zip
文件大小 1.4MB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-01-18 13:44:51

图片预览

文档简介










二次函数压轴专题
四、二次函数新定义问题
例4.小贤与小杰在探究某类二次函数问题时,经历了如下过程:
求解体验 (1)已知抛物线经过点(-1,0),则= ,顶点坐标为 ,该抛物线关于点(0,1)成中心对称的抛物线的表达式是 .
抽象感悟:我们定义:对于抛物线,以轴上的点为中心,作该抛物线关于
点对称的抛物线 ,则我们又称抛物线为抛物线的“衍生抛物线”,点为“衍生中心”.
(2)已知抛物线关于点的衍生抛物线为,若这两条抛物线有交点,求的取值范围.
问题解决(3) 已知抛物线,若抛物线的衍生抛物线为,两抛物线有两个交点,且恰好是它们的顶点,求的值及衍生中心的坐标;

【答案】求解体验: ;顶点坐标是(-2,1);;抽象感悟:;问题解决:①;(0,6);
【解析】【分析】(1)把(-1,0)代入 即可未出=-4,然后把抛物线解析式变为顶点式即可求得抛物线的顶点坐标,继而可得顶点关于(0,1)的对称点,从而可写出原抛物线关于点(0,1)成中心对称的抛物线的表达式;
(2)先求出抛物线 的顶点是(-1,6),从而求出 (-1,6)关于的对称点是,得 ,根据两抛物线有交点,可以确定方程 有解,继而求得m的取值范围即可;
(3) ①先求出抛物线以及抛物线的衍生抛物线为,的顶点坐标,根据两抛物线有两个交点,且恰好是它们的顶点,求的值及再根据中点坐标公式即可求出衍生中心的坐标;

练习1.在平面直角坐标系中,我们定义直线为抛物线、b、c为常数,的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.
已知抛物线与其“梦想直线”交于A、B两点点A在点B的左侧,与x轴负半轴交于点C.
填空:该抛物线的“梦想直线”的解析式为______,点A的坐标为______,点B的坐标为______;
如图,点M为线段CB上一动点,将以AM所在直线为对称轴翻折,点C的对称点为N,若为该抛物线的“梦想三角形”,求点N的坐标;
当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由.

【答案】(1);;;(2)N点坐标为或;(3)、或、
【解析】试题分析:(1)由梦想直线的定义可求得其解析式,联立梦想直线与抛物线解析式可求得A、B的坐标;
(2)当N点在y轴上时,过A作AD⊥y轴于点D,则可知AN=AC,结合A点坐标,则可求得ON的长,可求得N点坐标;当M点在y轴上即M点在原点时,过N作NP⊥x轴于点P,由条件可求得∠NMP=60°,在Rt△NMP中,可求得MP和NP的长,则可求得N点坐标;
(3)当AC为平行四边形的一边时,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,可证△EFH≌△ACK,可求得DF的长,则可求得F点的横坐标,从而可求得F点坐标,由HE的长可求得E点坐标;当AC为平行四边形的对角线时,设E(﹣1,t),由A、C的坐标可表示出AC中点,从而可表示出F点的坐标,代入直线AB的解析式可求得t的值,可求得E、F的坐标.






练习2.若二次函数和的图象关于原点成中心对称,我们就称其中一个函数是另一个函数的中心对称函数,也称函数和互为中心对称函数.
求函数的中心对称函数;
如图,在平面直角坐标系xOy中,E,F两点的坐标分别为,,二次函数的图象经过点E和原点O,顶点为已知函数和互为中心对称函数;
请在图中作出二次函数的顶点作图工具不限,并画出函数的大致图象;
当四边形EPFQ是矩形时,请求出a的值;
已知二次函数和互为中心对称函数,且的图象经过的顶点当时,求代数式的最大值.

【答案】;画图见解析;a的值为;当时,有最大值,最大值为3.
【解析】
利用配方法得到,则此抛物线的顶点坐标为,利用中心对称的性质得点关于原点对称的点的坐标为,然后利用顶点式写出函数的中心对称函数解析式;
作P点关于原点的对称点得到q点,然后大致画出顶点为Q,经过原点和F点的抛物线;
利用矩形的性质得,则利用抛物线的对称性得到,则可判定为等边三角形,作于H,如图,易得,,所以,设交点式,然后把P点坐标代入即可得到a的值;
把化为顶点式得到抛物线的顶点坐标为,利用关于原点对称的点的坐标特征得到抛物线的顶点坐标为,再把代入得,所以,然后利用二次函数的性质解决问题.




练习3.我们定义:两个二次项系数之和为1,对称轴相同,且图象与y轴交点也相同的二次函数互为友好同轴二次函数例如:的友好同轴二次函数为.
请你分别写出,的友好同轴二次函数;
满足什么条件的二次函数没有友好同轴二次函数?满足什么条件的二次函数的友好同轴二次函数是它本身?
如图,二次函数:与其友好同轴二次函数都与y轴交于点A,点B、C分别在、上,点B,C的横坐标均为,它们关于的对称轴的对称点分别为,,连结,,,CB.
若,且四边形为正方形,求m的值;
若,且四边形的邻边之比为1:2,直接写出a的值.

【答案】函数的友好同轴二次函数为;函数的友好同轴二次函数为;二次项系数为1的二次函数没有友好同轴二次函数;二次项系数为的二次函数的友好同轴二次函数是它本身;的值为;的值为、、或.
【分析】(1)根据友好同轴二次函数的定义,找出、的友好同轴二次函数即可;
(2)由二次项系数非零可得出二次项系数为1的二次函数没有友好同轴二次函数,由友好同轴二次函数的定义可知:二次项系数为的二次函数的友好同轴二次函数是它本身;
(3)根据二次函数L_1的解析式找出其友好同轴二次函数L_2的函数解析式.
①代入a=3,利用二次函数图象上点的坐标特征可得出点B、C、B'、C'的坐标,进而可得出BC、BB'的值,由正方形的性质可得出BC=BB',即关于m的一元二次方程,解之取其大于0小于2的值即可得出结论;
②由m=1,利用二次函数图象上点的坐标特征可得出点B、C、B'、C'的坐标,进而可得出BC、BB'的值,由两边之比为1:2,即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.
练习4.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”,[a,b,c]称为“抛物线系数”.
(1)任意抛物线都有“抛物线三角形”是______(填“真”或“假”)命题;
(2)若一条抛物线系数为[1,0,-2],则其“抛物线三角形”的面积为________;
(3)若一条抛物线系数为[-1,2b,0],其“抛物线三角形”是个直角三角形,求该抛物线的解析式;
(4)在(3)的前提下,该抛物线的顶点为A,与x轴交于O,B两点,在抛物线上是否存在一点P,过P作PQ⊥x轴于点Q,使得△BPQ∽△OAB,如果存在,求出P点坐标,如果不存在,请说明理由.
【答案】(1)假;(2);(3)y=-x2+2x 或y=-x2-2x;(4)P(1,1)或P(-1,-3)或P(1,-3)或(-1,1).
【解析】分析:(1)当△>0时,抛物线与x轴有两个交点,由此可得出结论;
(2)根据“抛物线三角形”定义得到,由此可得出结论;
(3)根据“抛物线三角形”定义得到y=-x2+2bx,它与x轴交于点(0,0)和(2b,0);
当抛物线三角形是直角三角形时,根据对称性可知它一定是等腰直角三角形,
由抛物线顶点为(b,b2),以及直角三角形斜边上的中线等于斜边的一半得到,解方程即可得到结论;(4)分两种情况讨论:①当抛物线为y=-x2+2x 时,②当抛物线为y=-x2-2x 时.
练习5.对某一个函数给出如下定义:若存在实数,对于函数图象上横坐标之差为1的任意两点,,都成立,则称这个函数是限减函数,在所有满足条件的中,其最大值称为这个函数的限减系数.例如,函数,当取值和时,函数值分别为,,故,因此函数是限减函数,它的限减系数为.
(1)写出函数的限减系数;
(2),已知()是限减函数,且限减系数,求的取值范围.
(3)已知函数的图象上一点,过点作直线垂直于轴,将函数的图象在点右侧的部分关于直线翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减函数,且限减系数,直接写出点横坐标的取值范围.
【答案】(1)2;(2)(3)
【解析】分析: 根据题目中限减函数以及限减系数的定义分析即可.
若,则,(,)和(,)是函数图象上两点,,与函数的限减系数不符,接下来分和两种情况进行讨论即可.
首先写出泛着后新函数的函数解析式,根据限减函数的定义进行判定即可.
练习6.定义:若抛物线L2:y=mx2+nx(m≠0)与抛物线L1:y=ax2+bx(a≠0)的开口大小相同,方向相反,且抛物线L2经过L1的顶点,我们称抛物线L2为L1的“友好抛物线”.
(1)若L1的表达式为y=x2﹣2x,求L1的“友好抛物线”的表达式;
(2)已知抛物线L2:y=mx2+nx为L1:y=ax2+bx的“友好抛物线”.求证:抛物线L1也是L2的“友好抛物线”;
(3)平面上有点P(1,0),Q(3,0),抛物线L2:y=mx2+nx为L1:y=ax2的“友好抛物线”,且抛物线L2的顶点在第一象限,纵坐标为2,当抛物线L2与线段PQ没有公共点时,求a的取值范围.
【答案】(1)y=﹣x2;(2)答案见解析;(3)0<a<或a>8.
【解析】试题分析:(1)设L1的“友好抛物线”的表达式为:y=﹣x2+bx,根据L1:y=x2﹣2x可得其顶点坐标,代入y=﹣x2+bx可得b的值,进而得出L1的“友好抛物线”;
(2)先求出抛物线L1和L2的顶点坐标,根据L2过L1 的顶点,得出bn=0,进而得到抛物线L1经过L2的顶点,再根据L2与L1的开口大小相同,方向相反,即可得出抛物线L1也是L2的“友好抛物线”;
(3)根据“友好抛物线”的定义,得到m=﹣a,进而得到L2的顶点为(,).根据抛物线L2的顶点在第一象限,纵坐标为2,可得a=n2>0.再根据L2经过点P(1,0),得到a=8.根据L2经过点Q(3,0),得到a=.进而得出抛物线L2与线段PQ没有公共点时,a的取值范围.

练习7.定义:顶点、开口大小相同,开口方向相反的两个二次函数互为“反簇二次函数”.
(1)已知二次函数y=﹣(x﹣2)2+3,则它的“反簇二次函数”是__________________;
(2)已知关于x的二次函数y1=2x2﹣2mx+m+1和y2=ax2+bx+c,其中y1的图像经过点(1,1).若y1+y2与y1互为“反簇二次函数”.求函数y2的表达式,并直接写出当0≤x≤3时,y2的最小值.
【答案】(1)、y=(x﹣2)2+3;(2)、-16.
【解析】分析:(1)、根据“反簇二次函数”的定义得出答案;(2)、根据y1的图像经过点A(1,1)求出m的值,然后得出y1+y2的函数解析式,根据“反簇二次函数”的定义得出a、b、c的值,从而得出y2的函数解析式,根据二次函数的性质得出最小值.








练习8.如图①,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B在抛物线L1上(点A与点B不重合),我们把这样的两抛物线L1、L2称为“伴随抛物线”,可见一条抛物线的“伴随抛物线”可以有多条.
(1)抛物线L1:y=-x2+4x-3与抛物线L2是“伴随抛物线”,且抛物线L2的顶点B的横坐标为4,求抛物线L2的表达式;
(2)若抛物线y=a1(x-m)2+n的任意一条“伴随抛物线”的表达式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由;
(3)在图②中,已知抛物线L1:y=mx2-2mx-3m(m>0)与y轴相交于点C,它的一条“伴随抛物线”为L2,抛物线L2与y轴相交于点D,若CD=4m,求抛物线L2的对称轴.

【答案】(1)抛物线L2的表达式为y=(x-4)2-3?;(2)a1=-a2 , 理由见解析;(3)抛物线L2的对称轴为x=±2?.
【解析】
试题分析:(1)先分别求得点A、点B的坐标,然后再利用待定系数法进行求解即可;
(2)根据:抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上,可以列出两个方程,相加可得:(a1+a2 )(m-h)2=0,可得a1=-a2;
(3)易得抛物线L1的顶点坐标为(1,-4m),设抛物线L2的顶点的横坐标为h,则其纵坐标为mh2-2mh-3m,则有抛物线L2的表达式为y=-mx2+2mhx-2mh-3m,从而得点D的坐标为(0,-2mh-3m),再根据点C的坐标为(0,-3m),从而可得|(-2mh-3m)-(-3m)|=4m,解得h=±2,从而得抛物线L2的对称轴为x=±2.












五、二次函数的平移、翻折、旋转
例5.如图,抛物线L1:y=﹣x2+bx+c经过点A(1,0)和点B(5,0)已知直线l的解析式为y=kx﹣5.
(1)求抛物线L1的解析式、对称轴和顶点坐标.
(2)若直线l将线段AB分成1:3两部分,求k的值;
(3)当k=2时,直线与抛物线交于M、N两点,点P是抛物线位于直线上方的一点,当△PMN面积最大时,求P点坐标,并求面积的最大值.
(4)将抛物线L1在x轴上方的部分沿x轴折叠到x轴下方,将这部分图象与原抛物线剩余的部分组成的新图象记为L2
①直接写出y随x的增大而增大时x的取值范围;
②直接写出直线l与图象L2有四个交点时k的取值范围.

【答案】(1)解析式为y=﹣x2+6x﹣5,对称轴:直线x=3,顶点坐标(3,4);(2)k=或k=;(3)当x=2时,SPMN最大,最大值为8,此时P(2,3);(4)①当x≤1或3≤x≤5时y随x的增大而增大;②当<k<1时,直线l与图象L2有四个交点.
【分析】
(1)根据待定系数法,可得函数解析式;(2)根据线段的比,可得直线与x轴的交点,根据自变量与函数值的对应关系,可得答案;(3)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PH,根据三角形的面积,可得二次函数,根据二次函数的性质,可得答案;(4)①根据函数图象的增减趋势,可得答案;②根据函数图象的交点,可得直线经过D,B点,根据自变量与函数值的对应关系,可得相应的k值,可得答案.







练习1.如图1,已知抛物线L1:y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,在L1上任取一点P,过点P作直线l⊥x轴,垂足为D,将L1沿直线l翻折得到抛物线L2,交x轴于点M,N(点M在点N的左侧).
(1)当L1与L2重合时,求点P的坐标;
(2)当点P与点B重合时,求此时L2的解析式;并直接写出L1与L2中,y均随x的增大而减小时的x的取值范围;
(3)连接PM,PB,设点P(m,n),当n= m时,求△PMB的面积.

【答案】(1)P(1,4);(2)x≥5 ;(3)△PMB的面积为或3
【解析】
(1)由配方法可得顶点坐标;
(2)由对称性求出抛物线L2的顶点,进而得到解析式,由图象可得;
(3)利用点P在抛物线上和n=m构造方程求出m、n,分类讨论求△PMB的面积.











练习2.有一个二次函数满足以下条件:
①函数图象与x轴的交点坐标分别为A(1,0),B(x2,y2)(点B在点A的右侧);
②对称轴是x=3;
③该函数有最小值是﹣2.
(1)请根据以上信息求出二次函数表达式;
(2)将该函数图象x>x2的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.

【答案】(1)y=(x﹣3)2﹣2;(2)11<x3+x4+x5<9+2.
【分析】
(1)利用二次函数解析式的顶点式求得结果即可;
(2)由已知条件可知直线与图象“G”要有3个交点.分类讨论:分别求得平行于x轴的直线与图象“G”有2个交点、1个交点时x3+x4+x5的取值范围,易得直线与图象“G”要有3个交点时x3+x4+x5的取值范围.












练习3.在平面直角坐标系xOy中,抛物线y=mx2﹣4mx+4m+4(m≠0)的顶点为P.P,M两点关于原点O成中心对称.
(1)求点P,M的坐标;
(2)若该抛物线经过原点,求抛物线的表达式;
(3)在(2)的条件下,将抛物线沿x轴翻折,翻折后的图象在0≤x≤5的部分记为图象H,点N为抛物线对称轴上的一个动点,经过M,N的直线与图象H有两个公共点,结合图象求出点N的纵坐标n的取值范围.

【答案】(1)点P(2,4),点M(﹣2,﹣4);(2)y=﹣x2+4x(3)﹣4<n≤
【解析】分析:(1)将抛物线解析式转化为顶点式,易得点P的坐标;结合关于原点对称的点的特征写出点M的坐标;
(2)把原点代入函数解析式求得m的值;
(3)翻折后顶点坐标为 结合图象解答.


练习4.如果抛物线的顶点在抛物线上,同时,抛物线的顶点在抛物线上,那么,我们称抛物线与关联.
(1)已知抛物线,判断下列抛物线:①;② 与已知抛物线是否关联,并说明理由;
(2)已知抛物线: ,点P的坐标为,将抛物线绕点旋转180°得到抛物线(此处我们称点P为旋转点),若抛物线与关联,求抛物线的解析式;
(3)在(2)的条件下,已知点是抛物线上的一点,求以点A为顶点并与抛物线相关联的抛物线的解析式,并判断此时抛物线能否由抛物线旋转得来?若能,请求出旋转点坐标;若不能,请说明你的理由;
(4)由上述结论猜想:若两抛物线相关联,则它们的二次式项系数(分别记为)应满足数量关系: .
参考公式(中点坐标公式):若点,则线段AB的中点坐标为.


【答案】(1)抛物线①与已知抛物线相关联,而抛物线②不与已知抛物线相关联,理由见解析;(2)抛物线: 或;(3)旋转点;(4).
【解析】试题分析:(1)首先求出抛物线①、②的顶点坐标,然后根据定义的抛物线关联条件即可进行判断.
(2)先求出抛物线C1的顶点坐标,设C2顶点为(x,y),根据旋转可知抛物线C2的顶点与C1的顶点关于点P(t,-1)对称,从而可用含t的代数式表示C2的顶点坐标,然后根据定义代入C1的解析式,确定出C2的顶点,从而可求出C2的解析式;
(3)根据题意求出A点坐标,从而可利用顶点式来确定C2的解析式,从而可确定出旋转点的坐标;
(4)根据定义若关联,则二次项系数互为相反数,从而可得.










六、二次函数动点问题
例6.如图(1)二次函数 的图象与x轴交于A(3,0),B(-1,0)两点,与y轴交于点C。
(1)求该二次函数的解析式;
(2)设该抛物线的顶点为D,求△ACD的面积(请在图(1)中探索);
(3)若点P,Q同时从点A出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动。当点P,Q运动t秒时,将△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上点E处,请直接判定此时四边形APEQ的形状,并求出点E的坐标。






练习1.如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+分别与y轴及抛物线交于点C,D.
(1)求直线和抛物线的表达式;
(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;
(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.


【答案】(1)抛物线解析式为:y=,BD解析式为y=﹣;(2)t的值为、、.(3)N点坐标为(﹣2,﹣2),M点坐标为(﹣,﹣),.
【解析】分析:(1)利用待定系数法求解可得;
(2)先求得点D的坐标,过点D分别作DE⊥x轴、DF⊥y轴,分P1D⊥P1C、P2D⊥DC、P3C⊥DC三种情况,利用相似三角形的性质逐一求解可得;
(3)通过作对称点,将折线转化成两点间距离,应用两点之间线段最短.

练习2.直线y=﹣x+3交x轴于点A,交y轴于点B,顶点为D的抛物线y=﹣x2+2mx﹣3m经过点A,交x轴于另一点C,连接BD,AD,CD,如图所示.
(1)直接写出抛物线的解析式和点A,C,D的坐标;
(2)动点P在BD上以每秒2个单位长的速度由点B向点D运动,同时动点Q在CA上以每秒3个单位长的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒.PQ交线段AD于点E.
①当∠DPE=∠CAD时,求t的值;
②过点E作EM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N,当PN=EM时,求t的值.

【答案】(1)点A(2,0),点C(6,0),点D(4,3),(2)①秒;(2)t=(1﹣)秒或t=秒.
【解析】【分析】(1)先由直线解析式求得点A、B坐标,将点A坐标代入抛物线解析式求得m的值,从而得出答案;
(2)①由(1)知BD=AC、BD//OC,根据AB=AD=证四边形ABPQ是平行四边形得AQ=BP,即2t=4-3t,解之即可;
②分点N在AB上和点N在AD上两种情况分别求解.