(共27张PPT)
导入新课
讲授新课
当堂练习
课堂小结
28.1 锐角三角函数
第二十八章 锐角三角函数
第3课时 利用方位角、坡度解直角三角形
九年级数学下(RJ)
教学课件
1. 正确理解方向角、坡度的概念. (重点)
2. 能运用解直角三角形知识解决方向角、坡度的问题;
能够掌握综合性较强的题型、融会贯通地运用相关的
数学知识,进一步提高运用解直角三角形知识分析解
决问题的综合能力. (重点、难点)
导入新课
以正南或正北方向为准,正南或正北方向线与目标方向线构成的小于90°的角,叫做方位角. 如图所示:
方位角
北偏东30°
南偏西45°
复习引入
讲授新课
典例精析
例1 如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80 n mile的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距离灯塔P有多远(精确到0.01 n mile)?
解:如图 ,在Rt△APC中,
PC=PA·cos(90°-65°)
=80×cos25°
≈80×0.91
=72.505.
在Rt△BPC中,∠B=34°,
因此,当海轮到达位于灯塔P的南偏东34°方向
时,它距离灯塔P大约130n mile.
解:过A作AF⊥BC于点F,
则AF的长是A到BC的
最短距离.
∵BD∥CE∥AF,
∴∠DBA=∠BAF=60°,
∠ACE=∠CAF=30°,
∴∠BAC=∠BAF-∠CAF=60°-30°=30°.
例2 如图,海岛A的周围8海里内有暗礁,鱼船跟踪鱼群由西向东航行,在点B处测得海岛A位于北偏东60°,航行12海里到达点C处,又测得海岛A位于北偏东30°,如果鱼船不改变航向继续向东航行.有没有触礁的危险?
E
F
又∵∠ABC =∠DBF-∠DBA
= 90°-60°=30°=∠BAC,
∴BC=AC=12海里,
∴AF=AC · cos30°=6 (海里),
6 ≈10.392>8,
故渔船继续向正东方向行驶,没有触礁的危险.
练一练
解:过点P作PC⊥AB,C是垂足.
则∠APC=30°,∠BPC=45°,
AC=PC·tan30°,BC=PC·tan45°.
∵AC+BC=AB,
∴PC · tan30°+PC · tan45°=200,
即 PC+PC=200,
解得 PC≈126.8km>100km.
答:计划修筑的这条高速公
路不会穿越保护区.
C
如图,从山脚到山顶有两条路AB与BC,问哪条路比较陡?
如何用数量来刻画哪条路陡呢?
观察与思考
α
i= h : l
1. 坡角
坡面与水平面的夹角叫做坡角,记作 α .
2. 坡度 (或坡比)
坡度通常写成 1∶m的形式,如i=1∶6.
如图所示,坡面的铅垂高度 (h) 和水
平长度 (l) 的比叫做坡面的坡度 (或坡
比),记作i, 即 i = h : l .
坡面
水平面
3. 坡度与坡角的关系
即坡度等于坡角的正切值.
1. 斜坡的坡度是 ,则坡角α =___度.
2. 斜坡的坡角是45° ,则坡比是 _____.
3. 斜坡长是12米,坡高6米,则坡比是_______.
30
1 : 1
练一练
例3 如图,一山坡的坡度为i=1:2.小刚从山脚A出发,
沿山坡向上走了240m到达点C.这座山坡的坡角是多
少度?小刚上升了多少米(角度精确到0.01°,长
度精确到0.1m)?
i=1:2
典例精析
在Rt△ABC中,∠B=90°,∠A=26.57°,
AC=240m,
因此 α≈26.57°.
答:这座山坡的坡角约为26.57°,小刚上
升了约107.3 m.
从而 BC=240×sin26.57°≈107.3(m).
例4 水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求:
(1) 斜坡CD的坡角α (精确到 1°);
i=1:3
解: 斜坡CD的坡度i = tanα = 1 : 2.5=0.4,
由计算器可算得α≈22°.
故斜坡CD的坡角α 为22°.
解:分别过点B、C作BE⊥AD,CF⊥AD,垂足分别
为点E、 F,由题意可知BE=CF=23m , EF=BC=6m.
在Rt△ABE中,
(2) 坝底AD与斜坡AB的长度 (精确到0.1m).
E
F
i=1:3
在Rt△ABE中,由勾股定理可得
故坝底AD的长度为132.5m,斜坡AB的长度为72.7m.
如图,小明周末上山踏青,他从山脚处的B点出发时,测得坡面AB的坡度为1 : 2,走 米到达山顶A处.这时,他发现山的另一坡面AC的最低点C的俯角是30°.请求出点B和点C的水平距离.
练一练
30°
当堂练习
B
2. 如图,某渔船如图所示,某渔船在海面上朝正东方
向匀速航行,在A处观测到灯塔M在北偏东60°方
向上,航行半小时后到达B处,此时观测到灯塔M
在北偏东30°方向上,那么该船继续航行到达离灯
塔距离最近的位置所需的时间是 ( )
A. 10分钟 B. 15分钟 C. 20分钟 D. 25分钟
B
3. 如图,C岛在A岛的北偏东50°方向,C岛在B岛的
北偏西40°方向,则从C岛看A,B两岛的视角
∠ACB等于 .
90°
4. 如图,海上B、C两岛分别位于A岛的正东和正北方
向,一艘船从A岛出发,以18海里/时的速度向正北
方向航行2小时到达C岛,此时测得B岛在C岛的南
偏东43°方向,则A、B两岛之间的距离为 .
(结果精确到0.1海里,参考数据:sin43°=0.68,
cos43°=0.73,tan43°=0.93)
33.5海里
解:作DE⊥AB,
CF⊥AB,
垂足分别为E、F.
由题意可知
DE=CF=4 (米),CD=EF=12 (米).
5. 一段路基的横断面是梯形,高为4米,上底的宽是
12米,路基的坡面与地面的倾角分别是45°和30°,
求路基下底的宽 (精确到0.1米, ,
). ?
45°
30°
4米
12米
A
B
C
D
在Rt△ADE中,
E
F
在Rt△BCF中,同理可得
因此 AB=AE+EF+BF≈4+12+6.93≈22.93 (米).
答: 路基下底的宽约为22.93米.
6. 如图有一个古镇建筑A,它周围800米内有古建筑,
乡村路要由西向东修筑,在B点处测得古建筑A在北
偏东60°方向上,向前直行1200米到达D点,这时
测得古建筑A在D点北偏东30°方向上,如果不改变
修筑的方向,你认为古建筑会不会遭到破坏?
D
B
A
E
课堂小结
解直角三角形的应用
坡度问题
方位角问题
坡角
坡度(或坡比)