人教新版七年级下学期《9.3 一元一次不等式组》2020年同步练习卷
一.选择题(共18小题)
1.下列不等式组:①,②,③,④,⑤.
其中一元一次不等组的个数是( )
A.2个 B.3个 C.4个 D.5个
2.已知不等式组有解,则a的取值范围为( )
A.a>﹣2 B.a≥﹣2 C.a<2 D.a≥2
3.不等式组的解集是3<x<a+2,则a的取值范围是( )
A.a>1 B.a≤3 C.a<1或a>3 D.1<a≤3
4.关于x的不等式组的解集为x<3,那么m的取值范围为( )
A.m=3 B.m>3 C.m<3 D.m≥3
5.若不等式组有解,则k的取值范围是( )
A.k<2 B.k≥2 C.k<1 D.1≤k<2
6.不等式组的解集是x>2,则a的取值范围是( )
A.a≤2 B.a≥2 C.a≤1 D.a>1
7.若不等式组无解,则m的取值范围是( )
A.m>2 B.m<2 C.m≥2 D.m≤2
8.若不等式组有解,则m的取值范围是( )
A.m<2 B.m≥2 C.m<1 D.1≤m<2
9.若不等式组无解,则m的取值范围是( )
A.m>3 B.m<3 C.m≥3 D.m≤3
10.已知不等式组的解集为﹣1<x<1,则(a+1)(b﹣1)值为( )
A.6 B.﹣6 C.3 D.﹣3
11.若不等式组有解,则实数a的取值范围是( )
A.a<﹣36 B.a≤﹣36 C.a>﹣36 D.a≥﹣36
12.如果不等式组恰有3个整数解,则a的取值范围是( )
A.a≤﹣1 B.a<﹣1 C.﹣2≤a<﹣1 D.﹣2<a≤﹣1
13.已知关于x的不等式组恰有3个整数解,则a的取值范围是( )
A. B. C. D.
14.已知关于x的不等式组有且只有1个整数解,则a的取值范围是( )
A.a>0 B.0≤a<1 C.0<a≤1 D.a≤1
15.若关于x的不等式整数解共有2个,则m的取值范围是( )
A.3<m<4 B.3≤m<4 C.3<m≤4 D.3≤m≤4
16.关于x的不等式组只有4个整数解,则a的取值范围是( )
A.﹣5≤a≤﹣ B.﹣5≤a<﹣ C.﹣5<a≤﹣ D.﹣5<a<﹣
17.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为( )
A.
B.
C.
D.
18.用甲乙两种原料配制成某种饮料,已知每千克的这两种原料的维生素C含量及购买这两种原料的价格如表所示:现配制这种饮料10kg,要求至少含有4200单位的维生素C,且购买原料的费用不超过72元.设所需甲种原料x(kg),则可列不等式组为( )
原料 甲 乙
维生素 600单位 100单位
原料价格 8元 4元
A.
B.
C.
D.
二.填空题(共6小题)
19.若不等式组的解集是﹣1<x<1,则(a+b)2009= .
20.如果不等式组无解,则a的取值范围是 .
21.已知,且﹣1<x﹣y<0,则k的取值范围为 .
22.若不等式组无解,则m的取值范围是 .
23.关于x的不等式组的解集为1<x<3,则a的值为 .
24.若不等式组恰有两个整数解.则实数a的取值范围是 .
三.解答题(共15小题)
25.如果关于x的不等式组无解,求a的取值范围.
26.解不等式组:,并把解集在数轴上表示出来.
27.解不等式组,并将它的解集在数轴上表示出来.
28.解不等式,并把它们的解集表示在数轴上.
29.解不等式组:,并把解集在数轴上表示出来.
30.解不等式组:.
31.解不等式组.
32.解不等式组:.
33.解不等式组:.
34.解不等式组,并把解集在数轴上表示出来.
35.已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值.
36.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.
(1)求饮用水和蔬菜各有多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;
(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?
37.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:
甲 乙
进价(元/件) 15 35
售价(元/件) 20 45
(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?
(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.
38.某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.
(1)求A、B型号衣服进价各是多少元?
(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.
39.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.
(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?
(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
人教新版七年级下学期《9.3 一元一次不等式组》2020年同步练习卷
参考答案与试题解析
一.选择题(共18小题)
1.下列不等式组:①,②,③,④,⑤.
其中一元一次不等组的个数是( )
A.2个 B.3个 C.4个 D.5个
【分析】根据一元一次不等式组的定义,含有两个或两个以上的不等式,不等式中的未知数相同,并且未知数的最高次数是一次,对各选项判断后再计算个数即可.
【解答】解:根据一元一次不等式组的定义,①②④都只含有一个未知数,并且未知数的最高次数是1,所以都是一元一次不等式组;
③含有一个未知数,但未知数的最高次数是2,⑤含有两个未知数,所以②⑤都不是一元一次不等式组.
故有①②④三个一元一次不等式组.
故选:B.
【点评】本题主要考查一元一次不等式组的定义,熟练掌握定义并灵活运用是解题的关键.
2.已知不等式组有解,则a的取值范围为( )
A.a>﹣2 B.a≥﹣2 C.a<2 D.a≥2
【分析】分别解这两个不等式,得出解集,既然有解,根据同大取较大,同小取较小,小大大小中间找,大大小小解不了的原则,建立适当的不等式,进行解答.
【解答】解:由(1)得x≥a,由(2)得x<2,故原不等式组的解集为a≤x<2,
∵不等式组有解,
∴a的取值范围为a<2.
故选:C.
【点评】解不等式组应遵循的法则:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则解答.
3.不等式组的解集是3<x<a+2,则a的取值范围是( )
A.a>1 B.a≤3 C.a<1或a>3 D.1<a≤3
【分析】根据题中所给条件,结合口诀,可得a﹣1与3之间、5和a+2之间都存在一定的不等关系,解这两个不等式即可.
【解答】解:根据题意可知a﹣1≤3
即a+2≤5
所以a≤3
又因为3<x<a+2
即a+2>3
所以a>1
所以1<a≤3
故选:D.
【点评】主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,注意:当符号方向不同,数字相同时(如:x>a,x<a),没有交集也是无解但是要注意当两数相等时,在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
4.关于x的不等式组的解集为x<3,那么m的取值范围为( )
A.m=3 B.m>3 C.m<3 D.m≥3
【分析】不等式组中第一个不等式求出解集,根据已知不等式组的解集确定出m的范围即可.
【解答】解:不等式组变形得:,
由不等式组的解集为x<3,
得到m的范围为m≥3,
故选:D.
【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.
5.若不等式组有解,则k的取值范围是( )
A.k<2 B.k≥2 C.k<1 D.1≤k<2
【分析】根据不等式组的解集为两个不等式解集的公共部分,所以在有解的情况下,k的值必须小于2.
【解答】解:因为不等式组有解,根据口诀可知k只要小于2即可.
故选:A.
【点评】主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,但是要注意当两数相等时,解集也是x>2,不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到.
6.不等式组的解集是x>2,则a的取值范围是( )
A.a≤2 B.a≥2 C.a≤1 D.a>1
【分析】根据不等式的性质求出不等式①的解集,根据不等式组的解集得出a+1≤2,求出不等式的解集即可.
【解答】解:,
∵解不等式①得:x>2,
解不等式②得:x>a+1,
又∵不等式组的解集是x>2,
∴a+1≤2,
∴a≤1.
故选:C.
【点评】本题考查了不等式的性质,解一元一次不等式(组)的应用,关键是根据不等式组的解集得出关于a的不等式,题目具有一定的代表性,是一道比较好的题目.
7.若不等式组无解,则m的取值范围是( )
A.m>2 B.m<2 C.m≥2 D.m≤2
【分析】求出两个不等式的解集,根据已知得出m≤2,即可得出选项.
【解答】解:,
∵解不等式①得:x>2,
不等式②的解集是x<m,
又∵不等式组无解,
∴m≤2,
故选:D.
【点评】本题考查了解一元一次不等式和解一元一次不等式组,关键是能根据已知得出关于m的不等式.
8.若不等式组有解,则m的取值范围是( )
A.m<2 B.m≥2 C.m<1 D.1≤m<2
【分析】本题实际就是求这两个不等式的解集.先根据第一个不等式中x的取值,分析m的取值.
【解答】解:原不等式组可化为(1)和(2),
(1)解集为m≤1;(2)有解可得m<2,
则由(2)有解可得m<2.
故选:A.
【点评】本题除用代数法外,还可画出数轴,表示出解集,与四个选项对照即可.同学们可以自己试一下.
9.若不等式组无解,则m的取值范围是( )
A.m>3 B.m<3 C.m≥3 D.m≤3
【分析】解出不等式组的解集(含m的式子),与不等式组无解比较,求出m的取值范围.
【解答】解:∵不等式组无解.
∴m≤3.故选D.
【点评】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.
10.已知不等式组的解集为﹣1<x<1,则(a+1)(b﹣1)值为( )
A.6 B.﹣6 C.3 D.﹣3
【分析】先解不等式,求出解集,然后根据题中已告知的解集,进行比对,从而得出两个方程,解答即可求出a、b.
【解答】解:不等式组,
解得,,
即,2b+3<x<,
∵﹣1<x<1,
∴2b+3=﹣1,,
得,a=1,b=﹣2;
∴(a+1)(b﹣1)=2×(﹣3)=﹣6.
故选:B.
【点评】本题考查了一元一次不等式组的解法,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
11.若不等式组有解,则实数a的取值范围是( )
A.a<﹣36 B.a≤﹣36 C.a>﹣36 D.a≥﹣36
【分析】先求出不等式组中每一个不等式的解集,不等式组有解,即两个不等式的解集有公共部分,据此即可列不等式求得a的范围.
【解答】解:,
解①得:x<a﹣1,
解②得:x≥﹣37,
∵方程有解,
∴a﹣1>﹣37,
解得:a>﹣36.
故选:C.
【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x大于较小的数、小于较大的数,那么解集为x介于两数之间.
12.如果不等式组恰有3个整数解,则a的取值范围是( )
A.a≤﹣1 B.a<﹣1 C.﹣2≤a<﹣1 D.﹣2<a≤﹣1
【分析】首先根据不等式组得出不等式组的解集为a<x<2,再由恰好有3个整数解可得a的取值范围.
【解答】解:如图,
由图象可知:不等式组恰有3个整数解,
需要满足条件:﹣2≤a<﹣1.
故选:C.
【点评】此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
13.已知关于x的不等式组恰有3个整数解,则a的取值范围是( )
A. B. C. D.
【分析】先求出不等式组的解集(含字母a),因为不等式组有3个整数解,可逆推出a的值.
【解答】解:由于不等式组有解,则,必定有整数解0,
∵,
∴三个整数解不可能是﹣2,﹣1,0.
若三个整数解为﹣1,0,1,则不等式组无解;
若三个整数解为0,1,2,则;
解得.
故选:B.
【点评】解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
14.已知关于x的不等式组有且只有1个整数解,则a的取值范围是( )
A.a>0 B.0≤a<1 C.0<a≤1 D.a≤1
【分析】首先解关于x的不等式组,确定不等式组的解集,然后根据不等式组只有一个整数解,确定整数解,则a的范围即可确定.
【解答】解:
∵解不等式①得:x>a,
解不等式②得:x<2,
∴不等式组的解集为a<x<2,
∵关于x的不等式组有且只有1个整数解,则一定是1,
∴0≤a<1.
故选:B.
【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
15.若关于x的不等式整数解共有2个,则m的取值范围是( )
A.3<m<4 B.3≤m<4 C.3<m≤4 D.3≤m≤4
【分析】首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.
【解答】解:解得不等式组的解集为:2≤x<m,
因为不等式组只有2个整数解,
所以这两个整数解为:2,3,
因此实数m的取值范围是3<m≤4.
故选:C.
【点评】本题考查了一元一次不等组的整数解,正确解出不等式组的解集,确定m的范围,是解决本题的关键.
16.关于x的不等式组只有4个整数解,则a的取值范围是( )
A.﹣5≤a≤﹣ B.﹣5≤a<﹣ C.﹣5<a≤﹣ D.﹣5<a<﹣
【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.
【解答】解:不等式组的解集是2﹣3a<x<21,
因为不等式组只有4个整数解,则这4个解是20,19,18,17.
所以可以得到16≤2﹣3a<17,
解得﹣5<a≤﹣.
故选:C.
【点评】正确解出不等式组的解集,正确确定2﹣3a的范围,是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
17.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x,则可以列得不等式组为( )
A.
B.
C.
D.
【分析】易得学生总人数,不空也不满意思是一个宿舍人数在1人和5人之间,关系式为:总人数﹣(x﹣1)间宿舍的人数≥1;总人数﹣(x﹣1)间宿舍的人数≤5,把相关数值代入即可.
【解答】解:∵若每间住4人,则还有19人无宿舍住,
∴学生总人数为(4x+19)人,
∵一间宿舍不空也不满,
∴学生总人数﹣(x﹣1)间宿舍的人数在1和5之间,
∴列的不等式组为:
故选:D.
【点评】考查列不等式组,理解“不空也不满”的意思是解决本题的突破点,得到相应的关系式是解决本题的关键.
18.用甲乙两种原料配制成某种饮料,已知每千克的这两种原料的维生素C含量及购买这两种原料的价格如表所示:现配制这种饮料10kg,要求至少含有4200单位的维生素C,且购买原料的费用不超过72元.设所需甲种原料x(kg),则可列不等式组为( )
原料 甲 乙
维生素 600单位 100单位
原料价格 8元 4元
A.
B.
C.
D.
【分析】所需甲种原料x(kg),则需乙种原料(10﹣x)kg.由题意得:xkg甲原料所含维生素+(10﹣x)kg乙≥4200单位;甲所花的费用+乙的费用≤72.
【解答】解:设所需甲种原料的质量为xkg,则需乙种原料(10﹣x)kg.
根据题意,得:,
故选:B.
【点评】此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,抓住题目中的不等关系,列出不等式.
二.填空题(共6小题)
19.若不等式组的解集是﹣1<x<1,则(a+b)2009= ﹣1 .
【分析】解出不等式组的解集,与已知解集﹣1<x<1比较,可以求出a、b的值,然后相加求出2009次方,可得最终答案.
【解答】解:由不等式得x>a+2,x<,
∵﹣1<x<1,
∴a+2=﹣1,=1
∴a=﹣3,b=2,
∴(a+b)2009=(﹣1)2009=﹣1.
【点评】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得零一个未知数.
20.如果不等式组无解,则a的取值范围是 a≤1 .
【分析】根据不等式组解集的定义可知,不等式x﹣1>0的解集与不等式x﹣a<0的解集无公共部分,从而可得一个关于a的不等式,求出此不等式的解集,即可得出a的取值范围.
【解答】解:解不等式x﹣1>0,得x>1,
解不等式x﹣a<0,x<a.
∵不等式组无解,
∴a≤1.
故答案为:a≤1.
【点评】本题中由两个一元一次不等式组成的不等式组无解,根据“大大小小无解集”,可知x﹣1>0的解集不小于不等式x﹣a<0的解集,尤其要注意不要漏掉a=1.
21.已知,且﹣1<x﹣y<0,则k的取值范围为 .
【分析】方程组两方程相减表示出x﹣y,根据﹣1<x﹣y<0列出关于k的不等式,求出不等式的解集即可求出k的范围.
【解答】解:,
由②﹣①,得x﹣y=1﹣2k.
∵﹣1<x﹣y<0,
∴﹣1<1﹣2k<0,
解得,;
故答案为:.
【点评】此题考查了解二元一次方程组,以及解一元一次不等式组,将方程组两方程相减表示出(x﹣y)是解本题的关键.
22.若不等式组无解,则m的取值范围是 m< .
【分析】先求出各个不等式的解集,因为不等式组无解,所以必须是大大小小找不到的情况,由此即可求出答案.
【解答】解:解不等式组可得,因为不等式组无解,所以m<.
【点评】本题主要考查了已知一元一次不等式组的解集,求不等式组中的字母的值,同样也是利用口诀求解.
注意:当符号方向不同,数字相同时(如:x>a,x<a),没有交集也是无解.
求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
23.关于x的不等式组的解集为1<x<3,则a的值为 4 .
【分析】求出不等式组的解集,根据已知得出a﹣1=3,从而求出a的值.
【解答】解:
∵解不等式①得:x>1,
解不等式②得:x<a﹣1,
∵不等式组的解集为1<x<3,
∴a﹣1=3,
∴a=4
故答案为:4.
【点评】本题考查了一元一次不等式组,解一元一次方程的应用,关键是能求出a﹣1=3.
24.若不等式组恰有两个整数解.则实数a的取值范围是 <a≤1 .
【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知不等式组有两个整数解得出不等式组1<2a≤2,求出不等式组的解集即可.
【解答】解:,
∵解不等式①得:x>﹣,
解不等式②得:x<2a,
∴不等式组的解集为﹣<x<2a,
∵不等式组有两个整数解,
∴1<2a≤2,
∴<a≤1,
故答案为:<a≤1.
【点评】本题考查了解一元一次不等式(组),不等式组的整数解,关键是能根据不等式组的解集得出关于a的不等式组,题目具有一定的代表性,是一道比较好的题目.
三.解答题(共15小题)
25.如果关于x的不等式组无解,求a的取值范围.
【分析】根据不等式组无解列出不等式计算即可得解.
【解答】解:由题意得:a+2≥3a﹣2,
解得a≤2.
【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
26.解不等式组:,并把解集在数轴上表示出来.
【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.
【解答】解:
∵解不等式①得:x>﹣3,
解不等式②得:x≤2,
∴不等式组的解集为﹣3<x≤2,
在数轴上表示不等式组的解集为:.
【点评】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.
27.解不等式组,并将它的解集在数轴上表示出来.
【分析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.
【解答】解:由①得:﹣2x≥﹣2,即x≤1,
由②得:4x﹣2<5x+5,即x>﹣7,
所以﹣7<x≤1.
在数轴上表示为:
【点评】本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.
28.解不等式,并把它们的解集表示在数轴上.
【分析】分别解两个不等式得到x<2和x≥﹣1,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示其解集.
【解答】解:,
解①得x<2,
解②得x≥﹣1,
所以不等式组的解集为﹣1≤x<2.
用数轴表示为:.
【点评】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.也考查了在数轴上表示不等式的解集.
29.解不等式组:,并把解集在数轴上表示出来.
【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式的解集.
【解答】解:由①得x≥4,
由②得x<1,
∴原不等式组无解,
【点评】此题考查解不等式组问题,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
30.解不等式组:.
【分析】本题可根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交集,则不等式无解.
【解答】解:不等式组可以转化为:
,
在坐标轴上表示为:
∴不等式组的解集为x<﹣7.
【点评】求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
31.解不等式组.
【分析】根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出即可.
【解答】解:,
∵解不等式①得:x≤1,
解不等式②得:x>﹣2,
∴不等式组的解集为﹣2<x≤1.
【点评】本题考查了不等式的性质,解一元一次不等式(组)的应用,关键是能根据不等式的解集找出不等式组的解集,题目比较好,难度也适中.
32.解不等式组:.
【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.
【解答】解:,
解①得x<2,
解②得x≥﹣1,
则不等式组的解集是﹣1≤x<2.
【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
33.解不等式组:.
【分析】先解不等式组中的每一个不等式,再求出它们的公共解即可.
【解答】解:.
由①得x≤1;
由②得x<4;
所以原不等式组的解集为:x≤1.
【点评】考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
34.解不等式组,并把解集在数轴上表示出来.
【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.
【解答】解:,
∵解不等式①得:x≤1,
解不等式②得:x>﹣2,
∴不等式组的解集为:﹣2<x≤1.
在数轴上表示不等式组的解集为:
【点评】本题考查了解一元一次不等式(组),在数轴上表示不等式组的解集的应用,关键是能根据不等式的解集找出不等式组的解集.
35.已知关于x,y的方程组的解满足不等式组,求满足条件的m的整数值.
【分析】首先根据方程组可得,再解不等式组,确定出整数解即可.
【解答】解:①+②得:3x+y=3m+4,
②﹣①得:x+5y=m+4,
∵不等式组,
∴,
解不等式组得:﹣4<m≤﹣,
则m=﹣3,﹣2.
【点评】此题主要考查了一元一次不等式组的整数解,关键是用含m的式子表示x、y.
36.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.
(1)求饮用水和蔬菜各有多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;
(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?
【分析】(1)关系式为:饮用水件数+蔬菜件数=320;
(2)关系式为:40×甲货车辆数+20×乙货车辆数≥200;10×甲货车辆数+20×乙货车辆数≥120;
(3)分别计算出相应方案,比较即可.
【解答】解:(1)设饮用水有x件,则蔬菜有(x﹣80)件.
x+(x﹣80)=320,
解这个方程,得x=200.
∴x﹣80=120.
答:饮用水和蔬菜分别为200件和120件;
(2)设租用甲种货车m辆,则租用乙种货车(8﹣m)辆.
得:
,
解这个不等式组,得2≤m≤4.
∵m为正整数,
∴m=2或3或4,安排甲、乙两种货车时有3种方案.
设计方案分别为:
①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆;
(3)3种方案的运费分别为:
①2×400+6×360=2960(元);
②3×400+5×360=3000(元);
③4×400+4×360=3040(元);
∴方案①运费最少,最少运费是2960元.
答:运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元.
【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的关系式.
37.某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:
甲 乙
进价(元/件) 15 35
售价(元/件) 20 45
(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?
(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.
【分析】(1)等量关系为:甲件数+乙件数=160;甲总利润+乙总利润=1100.
(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.
【解答】解:(1)设甲种商品应购进x件,乙种商品应购进y件.
根据题意得:.
解得:.
答:甲种商品购进100件,乙种商品购进60件.
(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.
根据题意得.
解不等式组,得65<a<68.
∵a为非负整数,∴a取66,67.
∴160﹣a相应取94,93.
方案一:甲种商品购进66件,乙种商品购进94件.
方案二:甲种商品购进67件,乙种商品购进93件.
答:有两种购货方案,其中获利最大的是方案一.
【点评】解决本题的关键是读懂题意,找到所求量的等量关系及符合题意的不等关系式组:甲件数+乙件数=160;甲总利润+乙总利润=1100.甲进价×甲数量+乙进价×乙数量<4300;甲总利润+乙总利润>1260.
38.某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.
(1)求A、B型号衣服进价各是多少元?
(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.
【分析】(1)等量关系为:A种型号衣服9件×进价+B种型号衣服10件×进价=1810,A种型号衣服12件×进价+B种型号衣服8件×进价=1880;
(2)关键描述语是:获利不少于699元,且A型号衣服不多于28件.关系式为:18×A型件数+30×B型件数≥699,A型号衣服件数≤28.
【解答】解:(1)设A种型号的衣服每件x元,B种型号的衣服y元,
则:,
解之得.
答:A种型号的衣服每件90元,B种型号的衣服100元;
(2)设B型号衣服购进m件,则A型号衣服购进(2m+4)件,
可得:,
解之得,
∵m为正整数,
∴m=10、11、12,2m+4=24、26、28.
答:有三种进货方案:
(1)B型号衣服购买10件,A型号衣服购进24件;
(2)B型号衣服购买11件,A型号衣服购进26件;
(3)B型号衣服购买12件,A型号衣服购进28件.
【点评】解决本题的关键是读懂题意,找到符合题意的不等关系式组,及方程组.
39.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.
(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?
(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
【分析】(1)关系式为:A种纪念品8件需要钱数+B种纪念品3件钱数=950;A种纪念品5件需要钱数+B种纪念品6件需要钱数=800;
(2)关系式为:用于购买这100件纪念品的资金不少于7500元,但不超过7650元,得出不等式组求出即可;
(3)因为B种纪念品利润较高,故B种数量越多总利润越高,因此选择购A种50件,B种50件.
【解答】解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,
根据题意得方程组得:,
解方程组得:,
∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元;
(2)设该商店购进A种纪念品x个,则购进B种纪念品有(100﹣x)个,
∴,
解得:50≤x≤53,
∵x 为正整数,x=50,51,52,53
∴共有4种进货方案,
分别为:方案1:商店购进A种纪念品50个,则购进B种纪念品有50个;
方案2:商店购进A种纪念品51个,则购进B种纪念品有49个;
方案3:商店购进A种纪念品52个,则购进B种纪念品有48个;
方案4:商店购进A种纪念品53个,则购进B种纪念品有47个.
(3)因为B种纪念品利润较高,故B种数量越多总利润越高,
设利润为W,则W=20x+30(100﹣x)=﹣10x+3000.
∵k=﹣10<0,
∴W随x大而小,
∴选择购A种50件,B种50件.
总利润=50×20+50×30=2500(元)
∴当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元.
【点评】此题主要考查了二元一次方程组的应用以及一元一次方程的应用,找到相应的关系式是解决问题的关键,注意第二问应求得整数解.