上海交通大学附属中学2018-2019学年度第一学期高二数学期末考试试卷及解析PDF版

文档属性

名称 上海交通大学附属中学2018-2019学年度第一学期高二数学期末考试试卷及解析PDF版
格式 zip
文件大小 4.8MB
资源类型 教案
版本资源 沪教版
科目 数学
更新时间 2020-01-20 21:01:28

图片预览

文档简介

上海交通大学附属中学20182019学年度第一学期
高二数学期末考试试卷
填空题
1.复数z=(m2-5m+6)+(m2-3m)Lm∈R,i为虚数单位,实数m=
时2是纯虚数
【解析】由题意可知,m2-5m+6=0且m2-3m=0,
解得m=2
2.复数z=(2+1)(1-1),其中i为虚数单位,则z的虚部为
【解析】x=(2+D(-0=3-1
则z的虚部为-1
3.抛物线x2=12y的准线方程为
【解析】抛物线x2=12y的准线方程为:y=-3
4.已知向量a=(1-2),b=(1,1),m=a-b,m=a+b,如果m⊥n,则实数=
【解析】前=d-b=(0.-3),=a+A=(+2.-2+)
⊥日,∴,丽=3(-2+)=0
解得A=2
5.若直线4:ax+2y=0和23x+(a+1)y+1=0平行,则实数a的值为
【解析】∵4:ax+2y=0与l2:3x+(a+D)y+1-0平行
或2
6.设双曲线yb=1b0的熊点为A、F:P为该双曲线上的点,若团=5,则一
【解析】根据题意双曲线的定义可知,a=√=3,‖FF|-1PF=6
又由PF=5,
解得,|PF2上11或-1(舍
故|PF=11
x=y+120
7.设xy满足约束条件{x+y-120,则z=2x-3y的最小值是
x≤3
【解析】可行城如图所示
使目标函数z=2x-3y取得最小值的最优解为A(34)
日标函数z=2x-3y的最小值为z=2×3-3×4--6
x+y1=0
8.若复数z满足22=团+1(其中为虚数单位,则
【解析】设复数z=a+b,
复数z满足x2叫x+1(其中为虚数单位)
(a+b2=a2+b2+1,
2a-2b=a2+b2+1
解得a=0,b=-1
=√0+1=1
9.在直角坐标系xOy中,已知点A(01)和点B(34),若点C位于第二象限,且在∠AOB的平分线
=2,则OC=
【解析】“O}=1,OB=5
设OC与AB交于D点
则:AD:BD=1:5
即D分有向线段AB所成的比为
设D(x,y)
第2页
-3x1
又:1OC}2
2OD030
为参数)化成曹地方程是
m上“
对于①式。可化成用x表示F的函数形式
3,其中x
问理,对于②式,可化用x表示F的函数形式
联立两个的表达式,得:
式交又相乐,得
1在牛面直角坐标系中,双曲线了的中心在点,它的一个焦点坐样为(0)=(21)吗=(2-1)
分别是条浙近线的方向向量,任取曲线I上的点P,若O画+起(bR,则a,b满足
的一个等式是
【解析】因为4(2D,=(2-D是两条新近线方向向量
第3页
听以双曲线出近线方程为t一
又=5,a=2,b1
线万程为一-y
O+-(2+254-b
但+2b-和-6)-1.化简得4b=1
在A中已A在号“号上点P是矿(21则,
OAOF=8,则线段OP在x轴上的投影长度的最大值为
【析】vAP=A-DOeB
CP=2DA·O,A,P三点其线,
设OP与轴的夹角为,B为我xy在x轴上的投影
线在上段长为研F,1
当且仅当
即1⊥加一时取得段大值10.
二、选择题
13.对干一元二次方程ar2+b+c=0(其中a已eRa≠0)下列命题不正瞬的是
B两根,马满足--x-
C.若判别式△=b-4x>0时,方程有两个相异的实数根
D.若判别式△=b2-4=0时。方程有两个相等的根
【解行】由很与系数之间的关系得对实系数二次方程,无论列别式A20
某与““,与“二,故A正确,
两根x,为框,则x一2一一不立,故错面
第4页
别式A=村,方程有两个围等的实数根,被C正确
当A>D时,则方程有两个相异的实看根,故D正德
己知两点A[L.2)B(4-2)到直线E距离分身是14.图满足条件的直线L共有()
B4条
【解析】由点A2),B4一2,易得1Bp=5,以点A为心,半径1为的
点B为国心,半径为4的国外切
前满足条件的直线/两个圆的公切,显然,两个国的公切线共有2第
1如图,在四边形ABCD中,AB⊥BCAD⊥DC,若同=叫-b,则AC,BD=
B e-r
C utl
【解析】4C.BD=( ID-DCPAD-AB= AD-04AD-DC)+DC
AB⊥BC、AD⊥DC
188c.0. A/=0
0-AhM+l)=-
16已如F为抛物线C:y2-4的焦点,ABC为抛物线C上三点,当+B+FC=0时,称△ABC
A.0个
D无数个
【解析】抛物战方程为y2=4x
连接F郑延长至D,使FD=F
当D在抛物线内部时,存在以D为中点们弦BC,则这样的三角那有无数个,
“和语三角形”有无数
选:D
解答题
设x+1为关于x的方程x2++=0《m∈R)的根,为虚数单位
(1)当z=-1+时,求围的值
(2)若甲=1,在复平面上,设复数z所对应的点为P,复数2+4所对应的点为Q,试求p的取盖
【解析】(1)当x==1,则x+1=t
方程,,自的两根分别为
与的美可样{+n,即,
(2)设+Nb的,则+1=+1+=a+1-8
由题可得:a+1+1=(a+1+
令a以NB-1bwaB.已e0.2)
PQ=、B-1-2F+(m4F=、=10+H,
(1)已非事复数满+2=2+R,素复数1
,是实数)
N-+-M
如0-x
同课章节目录