第二十五章 概率
一、单选题
1.下列事件中,属于不可能事件的是( )
A.掷一枚骰子,朝上一面的点数为5
B.任意画一个三角形,它的内角和是178°
C.任意写一个数,这个数大于-1
D.在纸上画两条直线,这两条直线互相平行
2.下列事件中,属于确定事件的个数是( )
(1)打开电视,正在播广告;
(2)投掷一枚普通的骰子,掷得的点数小于10;
(3)射击运动员射击一次,命中10环;
(4)在一个只装有红球的袋中摸出白球.
A.0 B.1 C.2 D.3
3.一个不透明的袋中有2个红球,3个白球,这些球除颜色外其余都相同,从口袋中随机摸出一个球,这个球是白球的概率是(?? )
A. B. C. D.
4.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为( )
A. B. C. D.
5.下表是某班同学随机投掷一枚硬币的试验结果( )
抛掷次数n 50 100 150 200 250 300 350 400 450 500
“正面向上”次数m 22 52 71 95 116 138 160 187 214 238
“正面向上”频率 0.44 0.52 0.47 0.48 0.46 0.46 0.46 0.47 0.48 0.48
下面有三个推断:
①表中没有出现“正面向上”的概率是0.5的情况,所以不能估计“正面向上”的概率是0.5;
②这些次试验投掷次数的最大值是500,此时“正面向上”的频率是0.48,所以“正面向上”的概率是0.48;
③投掷硬币“正面向上”的概率应该是确定的,但是大量重复试验反映的规律并非在每一次试验中都发生;
其中合理的是( )
A.①② B.①③ C.③ D.②③
6.袋中装有5个白球,3个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是( )
A. B. C. D.
7.如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )
A. B. C. D.
8.下列成语表示随机事件的是( )
A.水中捞月 B.水滴石穿 C.瓮中捉鳖 D.守株待兔
9.关于概率,下列说法正确的是( )
A.某地“明天降雨的概率是90%”表明明天该地有90%的时间会下雨;
B.13个同学参加一个聚会,他们中至少有两个同学的生日在同一个月;
C.“打开电视,正在播放新闻节目”是不可能事件;
D.经过有交通信号灯的路口,一定遇到红灯.
10.如图,正方形内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为( )
A. B. C. D.
二、填空题
11.从n个苹果和3个雪梨中,任选一个,若选中苹果的概率是,则n的值是____.
12.有黄色抹子9只,绿色袜子7只,白色袜子4只,红色袜子2只,黑色袜子1只,盲人摸袜子(摸出的袜子不放回):
(1)若每次摸1只,连续摸两次,恰好凑成一双黄袜子的概率是________.
(2)若要保证凑出2双不同色袜子,则至少要摸出________只袜子。
13.一个小球在如图所示的方格地板上自由滚动,并随机停留在某块地板上,每块地板大小、质地完全相同,那么该小球停留在黑色区域的概率是__.
14.同时抛掷3枚均匀的硬币,则3枚硬币落地后,都是正面朝上的概率是______.
三、解答题
15.如图所示,转盘被等分成六个扇形,并在上面依次写上数字,,,,,;
若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?
请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为.
16.甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1,2,3的小球,乙口袋中装有2个分别标有数字4,5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.
(1)请用列表或树状图的方法(只选其中一种),表示出两次所得数字可能出现的所有结果;
(2)求出两个数字之和能被3整除的概率.
17.某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品。下表是活动进行中的一组统计数据:
(1)计算并完成表格:
转动转盘的次数n 100 150 200 500 800 1000
落在“铅笔”的次数m 68 111 136 345 564 701
落在“铅笔”的频率m/n 0.68 0.74 △ 0.69 0.705 △
(2)请估计,当n很大时,频率将会接近多少?
(3)假如你去转动该转盘一次,你获得铅笔的概率约是多少?
(4)在该转盘中,表示“铅笔”区域的扇形的圆心角约是多少?(精确到1°)
18.现有A、B两个不透明袋子,分别装有3个除颜色外完全相同的小球。其中,A袋装有2个白球,1个红球;B袋装有2个红球,1个白球。
(1)将A袋摇匀,然后从A袋中随机取出一个小球,求摸出小球是白色的概率;
(2)小华和小林商定了一个游戏规则:从摇匀后的A,B两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,则小华获胜。请用列表法或画出树状图的方法说明这个游戏规则对双方是否公平?
答案
1.B
2.C
3.A
4.A
5.C
6.B
7.C
8.D
9.B
10.C
11.3.
12.; 14.
13..
14.
15.解:(1)自由转动转盘,当它停止转动时,指针指向奇数区的概率是=;
方法一:如图所示,自由转动转盘,当转盘停止时,指针指向阴影部分区域的概率为;
方法二:自由转动转盘,当它停止时,指针指向的数字不大于时,指针指向的区域的概率是.
16.(1)树状图如下:
(2)∵共6种情况,两个数字之和能被3整除的情况数有2种,
∴两个数字之和能被3整除的概率为,
即P(两个数字之和能被3整除)=.
17.(1)填表如下:
转动转盘的次数n 100 150 200 500 800 1000
落在“铅笔”的次数m 68 111 136 345 564 701
落在“铅笔”的频率m/n 0.68 0.74 0.68 0.69 0.705 0.701
(2)当n很大时,频率将会接近(68+111+136+345+564+701)÷(100+150+200+500+800+1000)=0.7,
故答案为:0.7;
(3)获得铅笔的概率约是0.7,
故答案为:0.7;
(4)扇形的圆心角约是0.7×360°=252°.
18.(1)A袋中共有3个球,其中有2个白球,
∴P(摸出白球)=;
(2)根据题意,列表如下:
红1 红2 白
白1 (白1,红1) (白1,红2) (白1,白)
白2 (白2,红1) (白2,红2) (白2,白)
红 (红,红1) (红,红2) (红,白)
由上表可知,共有9种等可能结果,其中颜色相同的结果有4种,颜色不同的结果有5种,
∴P(颜色相同)=,P(颜色不同)=,
∵<,
∴这个游戏规则对双方不公平