2020年湘教新版九年级下册数学《第2章 圆》单元测试卷
一.选择题(共12小题)
1.如图中正方形、矩形、圆的面积相等,则周长L的大小关系是( )
A.LA>LB>LC B.LA<LB<LC C.LB>LC>LA D.LC<LA<LB
2.如图,P为⊙O内的一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O交于B、C两点.若⊙O的半径长为3,OP=,则弦BC的最大值为( )
A.2 B.3 C. D.3
3.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”
如图所示,请根据所学知识计算:圆柱形木材的直径AC是( )
A.13寸 B.20寸 C.26寸 D.28寸
4.在同圆中,若AB=2CD,则与的大小关系是( )
A.> B.< C.= D.不能确定
5.如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=34°,那么∠BAD等于( )
A.34° B.46° C.56° D.66°
6.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105°,∠BAC=25°,则∠E的度数为( )
A.45° B.50° C.55° D.60°
7.若⊙O的半径为5cm,点A到圆心O的距离为6cm,那么点A与⊙O的位置关系是( )
A.点A在圆外 B.点A在圆上 C.点A在圆内 D.不能确定
8.给定下列图形可以确定一个圆的是( )
A.已知圆心 B.已知半径 C.已知直径 D.已知三个点
9.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=8,则cosB的值是( )
A. B. C. D.
10.已知⊙O的直径为12cm,圆心到直线L的距离5cm,则直线L与⊙O的公共点的个数为( )
A.2 B.1 C.0 D.不确定
11.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为( )
A.20° B.25° C.30° D.40°
12.如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D.过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;②△CBA∽△CDE;③=;④AE为⊙O的切线,一定正确的结论全部包含其中的选项是( )
A.①② B.①②③ C.①④ D.①②④
二.填空题(共8小题)
13.如图,⊙O的半径为4cm,∠AOB=60°,则弦AB的长为 cm.
14.如图,在△ABC中,∠A=62°,⊙O截△ABC三边所得的弦长相等,则∠BOC的度数是 .
15.如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升 cm.
16.在⊙O中,弦AB的长恰好等于半径,弦AB所对的圆心角为 .
17.如图,在⊙O中,半径OA⊥弦BC,∠AOB=50°,则圆周角∠ADC= .
18.如图,四边形ABCD是⊙O的内接四边形,∠BOD=100°,则∠BCD= °.
19.如图,在⊙O中,直径CD与弦AB相交于点E,若BE=3,AE=4,DE=2,则⊙O的半径是 .
20.已知点P为平面内一点,若点P到⊙O上的点的最长距离为5,最短距离为1,则⊙O的半径为 .
三.解答题(共8小题)
21.如图:A、B、C是⊙O上的三点,∠AOB=50°,∠OBC=40°,求∠OAC的度数.
22.如图,在⊙O中,半径OC⊥弦AB,垂足为点D,AB=12,CD=2.求⊙O半径的长.
23.某隧道的截面是由如图所示的图形构成,图形下面是长方形ABCD,上面是半圆形,其中AB=10米,BC=2.5米,隧道设双向通车道,中间有宽度为2米的隔离墩,一辆满载家具的卡车,宽度为3米,高度为4.9米,请计算说明这辆卡车是否能安全通过这个隧道?
24.如图,OA、OB、OC都是⊙O的半径,∠AOB=2∠BOC.探索∠ACB与∠BAC之间的数量关系,并说明理由.
25.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D.
(1)求BC的长.
(2)连接AD和BD,判断△ABD的形状,说明理由.并求BD的长.
(3)求CD的长.
26.如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.
27.如图,已知直角坐标系中,A(0,4)、B(4,4)、C(6,2),
(1)写出经过A、B、C三点的圆弧所在圆的圆心M的坐标:( , );
(2)判断点D(5,﹣2)与圆M的位置关系.
28.定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.
(1)如图1,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段 .
(2)在线段AC上确定一点P,使损矩形的四个顶点都在以P为圆心的同一圆上(即损矩形的四个顶点在同一个圆上),请作出这个圆,并说明你的理由.友情提醒:“尺规作图”不要求写作法,但要保留作图痕迹.
(3)如图2,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,D为菱形ACEF的中心,连接BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由.若此时AB=3,BD=,求BC的长.
2020年湘教新版九年级下册数学《第2章 圆》单元测试卷
参考答案与试题解析
一.选择题(共12小题)
1.如图中正方形、矩形、圆的面积相等,则周长L的大小关系是( )
A.LA>LB>LC B.LA<LB<LC C.LB>LC>LA D.LC<LA<LB
【分析】设相同的面积为未知数,进而判断出相应的周长,比较即可.
【解答】解:设面积是S.
则正方形的边长是,则周长LA=4==4;
长方形的一边长x,则另一边长为,则周长LB=2(x+),
∵(x+)2≥0
∴x+≥2,
∴LB≥4,
即LB≥;
圆的半径为,LC=2π×=,
∵<,
∴LC<LA<LB.
故选:D.
【点评】考查圆的认识的相关知识;应用(a+b)2≥0这个知识点进行解答是解决本题的难点.
2.如图,P为⊙O内的一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O交于B、C两点.若⊙O的半径长为3,OP=,则弦BC的最大值为( )
A.2 B.3 C. D.3
【分析】过点O作OE⊥AB于E,由垂径定理易知E是AB中点,从而OE是△ABC中位线,即BC=20E,而OE≤OP,故BC≤2OP.
【解答】解:过点O作OE⊥AB于E,如图:
∵O为圆心,
∴AE=BE,
∴OE=BC,
∵OE≤OP,
∴BC≤2OP,
∴当E、P重合时,即OP垂直AB时,BC取最大值,
最大值为2OP=2.
故选:A.
【点评】本题主要考查了垂径定理的基本应用、三角形三边关系,难度适中;过圆心作弦的垂线是运用垂径定理的常用技巧和手段,要熟练掌握.
3.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”
如图所示,请根据所学知识计算:圆柱形木材的直径AC是( )
A.13寸 B.20寸 C.26寸 D.28寸
【分析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解方程即可;
【解答】解:设⊙O的半径为r.
在Rt△ADO中,AD=5,OD=r﹣1,OA=r,
则有r2=52+(r﹣1)2,
解得r=13,
∴⊙O的直径为26寸,
故选:C.
【点评】本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.
4.在同圆中,若AB=2CD,则与的大小关系是( )
A.> B.< C.= D.不能确定
【分析】先根据题意画出图形,找出两相同的弦CD、DE,根据三角形的三边关系得到CE与CD+DE的关系,再比较出AB与CE的长,利用圆心角、弧、弦的关系进行解答即可.
【解答】解:如图所示,CD=DE,AB=2CD,
在△CDE中,
∵CD=DE,
∴CE<CD+DE,即CE<2CD=AB,
∴CE<AB,
∴<.
故选:A.
【点评】本题考查了圆心角、弧、弦的关系及三角形的三边关系,即在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
5.如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=34°,那么∠BAD等于( )
A.34° B.46° C.56° D.66°
【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,可求得∠ADB=90°,又由∠ACD=34°,可求得∠ABD的度数,再根据直角三角形的性质求出答案.
【解答】解:∵AB是⊙O的直径,
∴∠ADB=90°,
∵∠ACD=34°,
∴∠ABD=34°
∴∠BAD=90°﹣∠ABD=56°,
故选:C.
【点评】此题考查了圆周角定理以及直角三角形的性质.此题比较简单,注意掌握数形结合思想的应用.
6.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC,若∠ABC=105°,∠BAC=25°,则∠E的度数为( )
A.45° B.50° C.55° D.60°
【分析】先根据圆内接四边形的性质求出∠ADC的度数,再由圆周角定理得出∠DCE的度数,根据三角形外角的性质即可得出结论.
【解答】解:∵四边形ABCD内接于⊙O,∠ABC=105°,
∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.
∵=,∠BAC=25°,
∴∠DCE=∠BAC=25°,
∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.
故选:B.
【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.
7.若⊙O的半径为5cm,点A到圆心O的距离为6cm,那么点A与⊙O的位置关系是( )
A.点A在圆外 B.点A在圆上 C.点A在圆内 D.不能确定
【分析】点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.
【解答】解:d=6cm,
d>r,
点A在圆外,
故选:A.
【点评】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.
8.给定下列图形可以确定一个圆的是( )
A.已知圆心 B.已知半径 C.已知直径 D.已知三个点
【分析】根据确定圆的条件即可判断;
【解答】解:A、不能确定.因为半径不确定,故不符合题意;
B、不能确定.因为圆心的位置不确定,故不符合题意;
C、能确定,给定一直径,则圆心和半径确定,所以可以确定一个圆,故符合题意;
D、不能确定,不在同一直线上三点可以确定一个圆.故不符合题意;
故选:C.
【点评】本题考查确定圆的条件,记住:已知圆心和半径可以确定圆,不在同一直线上的三点可以确定一个圆;
9.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=8,则cosB的值是( )
A. B. C. D.
【分析】由圆周角定理可知∠B=∠D,所以只需在Rt△ACD中,求出∠D的余弦值即可.
【解答】解:∵AD是⊙O的直径,
∴∠ACD=90°.
Rt△ACD中,AD=2r=10,AC=8.
根据勾股定理,得:
CD=.
∴cosD=.
∵∠B=∠D,
∴cosB=cosD=,
故选:B.
【点评】此题主要考查的是圆周角定理、勾股定理以及锐角三角函数的定义;能够根据圆周角定理将所求角转化到直角三角形中,是解答此题的关键.
10.已知⊙O的直径为12cm,圆心到直线L的距离5cm,则直线L与⊙O的公共点的个数为( )
A.2 B.1 C.0 D.不确定
【分析】先求出圆的半径,圆心到直线的距离与半径比较即可判断出直线和圆的位置关系,从而确定公共点的个数.
【解答】解:∵⊙O的直径为12cm,
∴⊙O的半径为6cm,
∵圆心到直线L的距离为5cm,
∴直线L与圆是相交的位置关系,
∴直线L与⊙O的公共点的个数为2个.
故选:A.
【点评】直线和圆的位置关系的确定一般是利用圆心到直线的距离与半径比较来判断.若圆心到直线的距离是d,半径是r,则①d>r,直线和圆相离,没有交点;②d=r,直线和圆相切,有一个交点;③d<r,直线和圆相交,有两个交点.
11.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为( )
A.20° B.25° C.30° D.40°
【分析】连接OC,根据切线的性质求出∠OCD,求出∠COD,求出∠A=∠OCA,根据三角形的外角性质求出即可.
【解答】解:连接OC,
∵CD切⊙O于C,
∴OC⊥CD,
∴∠OCD=90°,
∵∠D=40°,
∴∠COD=180°﹣90°﹣40°=50°,
∵OA=OC,
∴∠A=∠OCA,
∵∠A+∠OCA=∠COD=50°,
∴∠A=25°.
故选:B.
【点评】本题考查了三角形的外角性质,三角形的内角和定理,切线的性质,等腰三角形的性质的应用,主要考查学生运用这些性质进行推理的能力,题型较好,难度也适中,是一道比较好的题目.
12.如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D.过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE.对于下列结论:①AD=DC;②△CBA∽△CDE;③=;④AE为⊙O的切线,一定正确的结论全部包含其中的选项是( )
A.①② B.①②③ C.①④ D.①②④
【分析】根据圆周角定理得∠ADB=90°,则BD⊥AC,于是根据等腰三角形的性质可判断AD=DC,则可对①进行判断;利用等腰三角形的性质和平行线的性质可证明∠1=∠2=∠3=∠4,则根据相似三角形的判定方法得到△CBA∽△CDE,于是可对②进行判断;由于不能确定∠1等于45°,则不能确定与相等,则可对③进行判断;利用DA=DC=DE可判断∠AEC=90°,即CE⊥AE,根据平行线的性质得到AB⊥AE,然后根据切线的判定定理得AE为⊙O的切线,于是可对④进行判断.
【解答】解:∵AB为直径,
∴∠ADB=90°,
∴BD⊥AC,
而AB=CB,
∴AD=DC,所以①正确;
∵AB=CB,
∴∠1=∠2,
而CD=ED,
∴∠3=∠4,
∵CF∥AB,
∴∠1=∠3,
∴∠1=∠2=∠3=∠4,
∴△CBA∽△CDE,所以②正确;
∵△ABC不能确定为直角三角形,
∴∠1不能确定等于45°,
∴与不能确定相等,所以③错误;
∵DA=DC=DE,
∴点E在以AC为直径的圆上,
∴∠AEC=90°,
∴CE⊥AE,
而CF∥AB,
∴AB⊥AE,
∴AE为⊙O的切线,所以④正确.
故选:D.
【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了等腰三角形的性质、平行线的性质和相似三角形的判定.
二.填空题(共8小题)
13.如图,⊙O的半径为4cm,∠AOB=60°,则弦AB的长为 4 cm.
【分析】利用半径相等可判断△OAB为等边三角形,然后根据等边三角形的性质易得AB=4cm.
【解答】解:∵OA=OB,
而∠AOB=60°,
∴△OAB为等边三角形,
∴AB=OA=4cm.
故答案为4.
【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等边三角形的判定与性质.
14.如图,在△ABC中,∠A=62°,⊙O截△ABC三边所得的弦长相等,则∠BOC的度数是 121° .
【分析】先利用⊙O截△ABC的三条边所得的弦长相等,得出即O是△ABC的内心,从而,∠1=∠2,∠3=∠4,进一步求出∠BOC的度数.
【解答】解:∵△ABC中∠A=70°,⊙O截△ABC的三条边所得的弦长相等,
∴O到三角形三条边的距离相等,即O是△ABC的内心,
∴∠1=∠2,∠3=∠4,∠1+∠3=(180°﹣∠A)=(180°﹣62°)=59°,
∴∠BOC=180°﹣(∠1+∠3)=180°﹣59°=121°.
故答案是:121°.
【点评】本题考查的是三角形的内心,及三角形内角和定理,比较简单.
15.如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升 10或70 cm.
【分析】分两种情形分别求解即可解决问题;
【解答】解:作半径OD⊥AB于C,连接OB
由垂径定理得:BC=AB=30cm,
在Rt△OBC中,OC==40cm,
当水位上升到圆心以下时 水面宽80cm时,
则OC′==30cm,
水面上升的高度为:40﹣30=10cm;
当水位上升到圆心以上时,水面上升的高度为:40+30=70cm,
综上可得,水面上升的高度为10cm或70cm.
故答案为10或70.
【点评】本题考查的是垂径定理的应用,掌握垂径定理、灵活运用分情况讨论思想是解题的关键.
16.在⊙O中,弦AB的长恰好等于半径,弦AB所对的圆心角为 60° .
【分析】先画图,由等边三角形的判定和性质求得弦AB所对的圆心角.
【解答】解:如图,
∵AB=OA=OB,∴△AOB为等边三角形,
∴∠AOB=60°,
故答案为60°.
【点评】本题考查了圆心角、弧、弦之间的关系,以及等边三角形的判定和性质.
17.如图,在⊙O中,半径OA⊥弦BC,∠AOB=50°,则圆周角∠ADC= 25° .
【分析】由在⊙O中,半径OA⊥弦BC,根据垂径定理可得:=,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得答案.
【解答】解:∵在⊙O中,半径OA⊥弦BC,
∴=,
∵∠AOB=50°,
∴∠ADC=AOB=25°.
故答案为:25°.
【点评】此题考查了圆周角定理与垂径定理.此题比较简单,注意掌握数形结合思想的应用.
18.如图,四边形ABCD是⊙O的内接四边形,∠BOD=100°,则∠BCD= 130 °.
【分析】先根据圆周角定理求出∠A的度数,再由圆内接四边形的性质即可得出结论.
【解答】解:∵∠BOD=100°,
∴∠A=50°.
∵四边形ABCD是圆内接四边形,
∴∠BCD=180°﹣50°=130°.
故答案为:130.
【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补是解答此题的关键.
19.如图,在⊙O中,直径CD与弦AB相交于点E,若BE=3,AE=4,DE=2,则⊙O的半径是 4 .
【分析】利用相交弦定理,可以求出CE的长,从而知道CD的长,就可求出⊙O的半径.
【解答】解:根据相交弦定理,AE?BE=CE?DE,
又∵BE=3,AE=4,DE=2,
∴CE=6
∴CD=CE+DE=8
那么圆的半径等于4.
故此题应该填4.
【点评】此题考查了相交弦定理,先求出直径,再得出半径.
20.已知点P为平面内一点,若点P到⊙O上的点的最长距离为5,最短距离为1,则⊙O的半径为 2或3 .
【分析】解答此题应进行分类讨论,点P可能位于圆的内部,也可能位于圆的外部.
【解答】解:当点P在圆内时,则直径=5+1=6,因而半径是3;
当点P在圆外时,直径=5﹣1=4,因而半径是2.
所以⊙O的半径为2或3.
故答案为:2或3.
【点评】本题考查的是点与圆的位置关系,在解答此题时要注意进行分类讨论.
三.解答题(共8小题)
21.如图:A、B、C是⊙O上的三点,∠AOB=50°,∠OBC=40°,求∠OAC的度数.
【分析】由,∠AOB=50°,∠OBC=40°,再利用圆周角定理求出∠BCA,然后由三角形的内角和得到∠OAC.
【解答】解:∵OB=OC∴∠OCB=∠OBC=40°(2分)
∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣40°﹣40°=100°(3分)
∴∠AOC=∠AOB+∠BOC=50°+100°=150°(4分)
又∵OA=OC∴∠OAC==15°(6分)
【点评】本题考查了圆的有关定义及三角形的内角和定理,解题的关键是能够利用好圆周角定理,难度不大.
22.如图,在⊙O中,半径OC⊥弦AB,垂足为点D,AB=12,CD=2.求⊙O半径的长.
【分析】连接OA,根据垂径定理求出AD=6,∠ADO=90°,根据勾股定理得出方程,求出方程的解即可.
【解答】解:连接AO,
∵半径OC⊥弦AB,
∴AD=BD,
∵AB=12,
∴AD=BD=6,
设⊙O的半径为R,
∵CD=2,
∴OD=R﹣2,
在Rt△AOD中,OA2=OD2+AD2,即:R2=(R﹣2)2+62,
∴R=10,
答:⊙O的半径长为10.
【点评】本题考查了垂径定理,勾股定理的应用,解此题的关键是构造直角三角形后根据勾股定理得出方程.
23.某隧道的截面是由如图所示的图形构成,图形下面是长方形ABCD,上面是半圆形,其中AB=10米,BC=2.5米,隧道设双向通车道,中间有宽度为2米的隔离墩,一辆满载家具的卡车,宽度为3米,高度为4.9米,请计算说明这辆卡车是否能安全通过这个隧道?
【分析】如图,作OM⊥AB于M,交AB于M,图中KN=3,作KF⊥CD于H,交⊙O于F,连接OF.求出FK的值与4.9比较即可判断.
【解答】解:如图,作OM⊥AB于M,交AB于M,图中KN=3,作KF⊥CD于H,交⊙O于F,连接OF.
易知四边形OHKN是矩形,四边形ABCD是矩形,OH=KM=4,AB=CD=10,OF=OD=5,
在Rt△OHF中,FH===3,
∵HK=BC=2.5,
∴FK=2.5+3=5.5,
∵5.5>4.9,
∴这辆卡车能安全通过这个隧道.
【点评】本题考查矩形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.
24.如图,OA、OB、OC都是⊙O的半径,∠AOB=2∠BOC.探索∠ACB与∠BAC之间的数量关系,并说明理由.
【分析】由圆周角定理,易得:∠ACB=∠AOB,∠CAB=∠BOC;已知∠AOB=2∠BOC,联立三式可求得所证的结论.
【解答】解:∠ACB=2∠BAC.
证明:∵∠ACB=∠AOB,∠BAC=∠BOC;
又∵∠AOB=2∠BOC,
∴∠ACB=2∠BAC.
【点评】此题主要考查了圆周角定理的应用,根据已知得出:∠ACB=∠AOB,∠CAB=∠BOC是解题关键.
25.如图,⊙O的直径AB的长为10,弦AC长为6,∠ACB的平分线交⊙O于D.
(1)求BC的长.
(2)连接AD和BD,判断△ABD的形状,说明理由.并求BD的长.
(3)求CD的长.
【分析】(1)根据圆周角定理得到∠ACB=90°,然后利用勾股定理可计算出BC;
(2)根据圆周角定理得到∠ADB=90°,再根据角平分线定义得∠ACD=∠BCD,则AD=BD,于是可判断△ABD为等腰直角三角形,然后根据等腰直角三角形的性质得到BD=AB=5;
(3)作BH⊥CD于H,如图,证明△BCH为等腰直角三角形得到BH=CH=BC=4,再利用勾股定理计算出DH=3,从而计算CH+DH即可.
【解答】解:(1)∵AB为⊙O的直径,
∴∠ACB=90°,
在Rt△ACB中,AB=10,AC=6,
∴BC==8;
(2)△ABD为等腰直角三角形.理由如下:
∵AB为⊙O的直径,
∴∠ADB=90°,
∵∠ACB的平分线交⊙O于D,
∴∠ACD=∠BCD,
∴AD=BD,
∴△ABD为等腰直角三角形,
∴BD=AB=5;
(3)作BH⊥CD于H,如图,
∵∠BCH=45°,
∴△BCH为等腰直角三角形,
∴BH=CH=BC=4,
在Rt△BDH中,DH==3,
∴CD=CH+DH=4+3=7.
【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.考查了等腰直角三角形的判定与性质以及勾股定理.
26.如图,已知A、B、C、D是⊙O上的四点,延长DC、AB相交于点E.若BC=BE.求证:△ADE是等腰三角形.
【分析】求出∠A=∠BCE=∠E,即可得出AD=DE,从而判定等腰三角形.
【解答】证明:∵A、D、C、B四点共圆,
∴∠A=∠BCE,
∵BC=BE,
∴∠BCE=∠E,
∴∠A=∠E,
∴AD=DE,
即△ADE是等腰三角形.
【点评】考查了圆内接四边形的性质、等腰三角形的判定的知识,属于基础题,相对比较简单.
27.如图,已知直角坐标系中,A(0,4)、B(4,4)、C(6,2),
(1)写出经过A、B、C三点的圆弧所在圆的圆心M的坐标:( 2 , 0 );
(2)判断点D(5,﹣2)与圆M的位置关系.
【分析】(1)点M在AB和BC的垂直平分线的交点处,在方格纸可以确定点M的坐标;
(2)用两点间距离公式求出圆的半径和线段DM的长,当DM小于圆的半径时点M在圆内.
【解答】解:(1)在方格纸中,线段AB和BC的垂直平分线相交于点(2,0),
所以圆心M的坐标为(2,0).
(2)圆的半径AM==2.
线段MD==<2,
所以点D在圆M内.
【点评】本题考查的是点与圆的位置关系,(1)利用方格纸得到圆心M的坐标.(2)利用两点间的距离公式求出圆的半径和线段MD的长,确定点D与圆的位置关系.
28.定义:只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.
(1)如图1,损矩形ABCD,∠ABC=∠ADC=90°,则该损矩形的直径是线段 AC .
(2)在线段AC上确定一点P,使损矩形的四个顶点都在以P为圆心的同一圆上(即损矩形的四个顶点在同一个圆上),请作出这个圆,并说明你的理由.友情提醒:“尺规作图”不要求写作法,但要保留作图痕迹.
(3)如图2,△ABC中,∠ABC=90°,以AC为一边向形外作菱形ACEF,D为菱形ACEF的中心,连接BD,当BD平分∠ABC时,判断四边形ACEF为何种特殊的四边形?请说明理由.若此时AB=3,BD=,求BC的长.
【分析】(1)根据题中给出的定义,由于∠DAB和∠DCB不是直角,因此AC就是损矩形的直径.
(2)根据直角三角形斜边上中线的特点可知:此点应是AC的中点,那么可作AC的垂直平分线与AC的交点就是四边形外接圆的圆心.
(3)本题可用面积法来求解,具体思路是用四边形ABCD面积的不同表示方法来求解,四边形ABCD的面积=三角形ABD的面积+三角形BCD的面积=三角形ABC的面积+三角形ADC的面积;三角形ABD的面积已知了AB的长,那么可过D作AB边的高,那么这个高就应该是BD?sin45°,以此可得出三角形ABD的面积;三角形BDC的面积也可用同样的方法求解,只不过AB的长,换成了BC;再看三角形ABC的面积,已知了AB的长,可用含BC的式子表示出ABC的面积;而三角形ACD的面积,可用正方形面积的四分之一来表示;而正方形的边长可在直角三角形ABC中,用勾股定理求出.因此可得出关于BC的方程,求解即可得出BC的值.
【解答】解:(1)只有一组对角是直角的四边形叫做损矩形,连接它的两个非直角顶点的线段叫做这个损矩形的直径.因此AC是该损矩形的直径;
(2)作图如图:
∵点P为AC中点,
∴PA=PC=AC.
∵∠ABC=∠ADC=90°,
∴BP=DP=AC,
∴PA=PB=PC=PD,
∴点A、B、C、D在以P为圆心, AC为半径的同一个圆上;
(3)∵菱形ACEF,
∴∠ADC=90°,AE=2AD,CF=2CD,
∴四边形ABCD为损矩形,
∴由(2)可知,点A、B、C、D在同一个圆上.
∵BD平分∠ABC,
∴∠ABD=∠CBD=45°,
∴,
∴AD=CD,
∴四边形ACEF为正方形.
∵BD平分∠ABC,BD=,
∴点D到AB、BC的距离h为4,
∴S△ABD=AB×h=2AB=6,
S△ABC=AB×BC=BC,
S△BDC=BC×h=2BC,S△ACD=S正方形ACEF=AC2=(BC2+9),
∵S四边形ABCD=S△ABC+S△ADC=S△ABD+S△BCD
∴BC+(BC2+9)=6+2BC
∴BC=5或BC=﹣3(舍去),
∴BC=5.
【点评】本题主要考查了菱形的性质,正方形的判定,圆的内接四边形等知识点.(3)中如果无法直接求出线段的长,可通过特殊的三角形用面积法来求解.