1.填一填。
3÷5写成比的形式,前项是( ),后项是( ),比值是( )。
2.根据下列信息写出比。
(1)五1班男生24人,女生36人,男生人数与女生人数的比是( ),女生人数与男生人数的比是( ),女生人数与全班人数的比是( )。
3.(1)一个正方形边长3厘米,正方形的周长与边长的比是( ),正方形的面积与边长的比是( )
(2)a除以b的商是47,a和b的比是( )
答案:
3 5 0.6或35
24:36 36:24 36:50
(1)12:3 9:3
( 2 ) 47:1
1. 根据下面的条件列出比例,并且解比例。
(1) 96和X的比等于16和5的比。
(2)45 和X的比等于25和8的比。
2.填空题。
(1)( )÷24=38 = 24 :( ) =( ) %
(2)在4 :7 =48 :84中,4和84是比例的( ),7和48是比例的( )。
(3)用2、3、4、6写出两个不同的比例式:( ) 、( )。
3. 解比例。
4:2.5=x:6 4.8:5.6=7:x 34 :35 = x : 23
答案:
1. (1)96:x=16:5 x=30
(2)45:x=25:8 x=14.4
2. (1) 9 64 37.5
(2)外项 内项
(3)2:4=3:6 2:3=4:6
3. x=9.6 x= 816 x= 56
1. 甲、乙两地实际距离是50米,画在一张图纸上的距离为1厘米,这幅图纸的比例尺是多少?
2. 在一幅地图上,量得甲地到乙地的距离是4.2厘米,实际距离是1050千米,求这幅地图的比例尺。
3. 学校操场上有一条长200米的跑道,在一张图纸上用4厘米表示,这张图纸的比例尺是多少?
4. 在比例尺是1:200000的地图上,量得两地距离是30厘米,这两地的实际距离是多少千米?
答案:
1.50米=5000厘米 比例尺为1:5000
2.1050千米=105000000厘米 4.2:105000000=1:25000000
3.200米=20000厘米 4:20000=1:5000
4. 30×200000=6000000厘米 = 60千米
1. 在一幅地图上,量得甲地到乙地的距离是4厘米,而甲地到乙地的实际距离是160千米,这幅地图的比例尺是多少?
2. 在一幅比例尺是1:4500000的地图上,量得甲地到乙地的距离是20厘米,甲地到乙地的实际距离是多少千米?
3. 北京与天津大约相距120千米,在比例尺是1:600000的地图上的距离约是多少厘米?
4.某小学的校园长200米,画在平面图上是20厘米,量得校园宽是150米,在这张图纸上应画多少厘米?
答案:
1. 160千米= 16000000厘米 4:16000000=1:4000000
2. 20÷14500000 = 20× 4500000=90000000厘米=900千米
3.120千米=12000000厘米 12000000×1600000 =20(厘米)
4. 200米=20000厘米 20:20000=1:1000
150米=15000厘米 15000×11000 =15(厘米)
1.填空题。
两种相关联的量,一种量变化,另一种量( )。当两种量中相对应的两个数的( )一定时,这两种量成正比例。
2.判断题。
(1)圆的面积和圆的半径成正比例。( )
(2)圆的面积和圆的半径的平方成正比例。( )
(3)正方形的面积和边长成正比例。( )
3.选择题。
(1)根据表格判断数量间的比例关系。
时间(时)
2
3
5
7
8
……
路程(千米)
100
150
250
350
400
……
?时间与路程(?)。
A.成正比例??? B.成反比例??? C.不成比例?
(2)圆柱体底面积与高(?? )。A.成正比例???B.成反比例?C.不成比例
圆柱体底面积(平方分米)
300
200
150
120
100
……
圆柱体高(分米)
2
3
4
5
6
……
答案:
1.变化 比值
2.(1)× (2)√ (3)×
3.(1)A (2)B
1. 填空。
(1)两种相关联的量,当一种量扩大或缩小若干倍,另一种也扩大或缩小( ),且相对应的两个数的比的比值( ),这两种量就叫做成正比例的量,它们的关系叫做( )。
(2)30:42=== =45÷( )=( )% 。
2. 判断下面各题中的两个量,是否成正比例,并说明理由。
(1)每袋大米的质量一定,大米的总质量和袋数。
(2)一个人的身高和年龄。
(3)宽不变,长方形的周长与长。
3. 20 颗螺丝钉重240g, 3600g 同样的螺丝钉有多少颗?
答案:
1.(1) 若干倍 相等 正比例关系
(2)5 28 15 63 71.4
2.(1) 成正比例 大米总质量÷袋数=每袋大米质量(一定)
(2)不成比例,身高和年龄不是相关联的量
(3)不成正比例 长方形周长÷2-长=宽(一定) 周长一定,长与宽是和差关系 和差关系不成比例
3. 240÷20=12(g)
3600÷12=300(颗)
1.填空题。
单价、总钱数和数量三个量中:当单价一定时,( )和( )成( )比例。当数量一定时,( )和( )成( )比例。当总钱数一定时,( )和( )成( )比例。
2.判断对错
(1)正方体的表面积与体积成正比例。( )
(2)一堆煤的总量不变,每天烧去的数量与烧的天数成反比例。( )
(3)长方体底面积一定,体积和高成正比例。( )
(4)三角形的面积不变,它的底与高成反比例。 ( )
3.下列各题中的两种量是不是成比例,成什么比例,并说明理由。
(1)买相同的电脑,购买的电脑台数与总价
(2)总路程一定,已行的路程与未行的路程
答案:
总钱数 数量 正 总钱数 单价 正 单价 数量 反
(1)× (2)√(3)√ (4)√
(1)正比例 总价÷数量=单价(一定)
(2)不成比例 已行的路程+未行的路程=总路程(一定) 和差关系不成比例
1.填空题。
速度、路程、时间三个量中:当速度一定时,( )和( )成( )比例。当时间一定时,( )和( )成( )比例。当路程一定时,( )和( )成( )比例。
2.下列各题中的两种量是不是成比例,成什么比例,并说明理由。
(1)妈妈的年龄和小明的年龄
(2)总钱数一定,单价和数量
(3)长方形长一定,面积和宽
、
答案:
路程 时间 正 路程 速度 正 速度 时间 反
(1)不成比例
(2)反比例 总钱数=单价×数量
(3)正比 长=面积÷宽
1. 一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐?(用比例方法解答)
2. 修路队修一条长120千米的公路,前4天修了20千米;照这样的速度,修完全路共需要多少天?(用比例方法解答)
3. 小丽看书,4天看了60页。照这样计算,他看完一本180页的书,需要多少天?
答案:
1.解:设100吨海水可以晒x吨盐。
15500=x100
500x=100×15
x=100×15500
x=3
答: 100吨海水可以晒3吨盐。
2. 解:设修完全路共需要x天。
204=120x
20x=120×4
x=24
答: 修完全路共需要24天。
3.60÷4=15(页) 180÷15=12(天)
1. 用一批纸装订同样的练习本,如果每本30页,可以装订80本。如果每本页数减少20%,这批纸可以装订多少本?
2.小明读一本书,每天读12页,8天可以读完。如果每天多读4页,几天可以读完?
3. 今春分配给学校一些植树任务,每天栽200棵6天可以完成任务,现在需要4天完成任务,实际每天比原计划多栽多少棵?
4. 一对互相咬合的齿轮,主动轮有20个齿,每分钟转60转,如果要使从动轮每分钟转40转,从动轮的齿数应是多少?
答案:
1. 100本
2. 8天
3.100棵
4. 20×60=1200(个) 1200÷40=30(个)
一、填空。
1. 把一个图形的每条边放大到原来的4倍,放大后的图形与原来图形对应边长的比是( ∶ ),就是把原来的图形按( ∶ )的比放大。
2. 把一个图形的每条边缩小到原来的,缩小后的图形与原来图形对应变长的比是( ∶ ),就是把原来的图形按( ∶ )的比缩小。
3. 把一个图形按1∶2的比缩小,现在每条边是原来的( )。
4. 把一个边长5厘米的正方形按2∶1的比放大后,边长是( )厘米。
二、选一选。
(1)图中( )号图形是①号长方形放大后的图形,它是按( ):( )的比放大的。
(2)图中( )号图形是①号长方形缩小后的图形,它是按( ):( )的比缩小的。
三、操作题。
先按3:1的比画出长方形放大后的图形。
答案:
1.(1)4:1 4:1 (2)1:3 1:3 (3)12 (4)10
2.(1)5 1.5:1 (2)3 1:2
3.
1.填一填。
(1) 5∶2的后项扩大2倍,要使比值不变,前项应( );比的前项缩小4倍,后项也要( ),比值不变。
(2)甲数是乙数的1.5倍,甲数和乙数的最简整数比是( )。
(3) 一个比的比值是8,如果它的前项扩大2倍,后项不变,则比值是( );如果它的前项不变,后项扩大2倍,则比值是( );如果它的前项扩大2倍,要使比值扩大4倍,则后项应( )。
2.把比值相等的比用线连一连。6∶9 ???2∶0.8??? 15:36?? 18:12
2:5 ????3∶2??? 2:3??? ?5∶12
3.聪聪和亮亮比赛投球 聪聪投了10次,9次中;亮亮投了20次,13次中 。
(1)分别写出聪聪、亮亮投中的次数与投的次数的比并求出比值。
(2)谁投中球的命中率高一些?
答案:
(1)扩大2倍 缩小4倍
(2)3:2
(3)16 4 缩小2倍
2.
6∶9 ???2∶0.8??? 15:36?? 18:12
2:5 ????3∶2??? 2:3??? ?5∶12
3. (1) 9:10 = 910 13:20 = 1320
(2)聪 聪 命中率高
1.填空题。
单价、总钱数和数量三个量中:当单价一定时,( )和( )成( )比例。当数量一定时,( )和( )成( )比例。当总钱数一定时,( )和( )成( )比例。
2. 判断:圆的面积与半径成正比例。 ( )
3.判断:正方形的面积与边长成正比例。 ( )
4.一辆汽车3小时行驶180千米,照这样计算,行驶300千米需要几小时?
答案:
总钱数 数量 正 总钱数 单价 正 单价 数量 反
×
×
4.解:设行驶300千米需要x小时。
180∶3=300∶x x=5
答:行驶300千米需要5小时。
1. 填一填。
(1)如果5a=4b(b≠0),那么a∶b=( )∶( )
如果a∶0.5=8∶0.2,那么a=( )
(2)8∶2 =24∶( ) 1.5∶3=( )∶3.4
(3)一个数(0除外)与它的倒数( )比例。
(4)大圆的直径是4厘米,小圆的直径是2厘米,大圆和小圆面积最简单的整数比是( )。
(5)白兔与灰兔只数的比是7∶6,白兔56只,灰兔( )只。
(6)三角形的面积一定,它的底和高成( )比例。
(7)在一个比例中,两个外项互为倒数,其中一个内项是 ,则另一个内项是( )。
2. 把3米长的竹竿直立在地面上,测得影长1.2米,同时测得一根旗杆的影长为4.8米,求旗杆的高是多少米。
3.一个长方形的长与宽的比是5:3,长方形的周长是32厘米,这个长方形的面积是多少?
答案:
1. (1) 4 5 20
(2)6 1.7
(3)反
(4)4:1 (5)48
(6)反
(7)6
2. 解: 旗杆的高是x米。
31.2=x4.8
1.2x=3×4.8
x=12
3. 32÷2=16(厘米) 16×38 =6(厘米) 16×58 =10(厘米)
10×6=60(平方厘米)
1.填空。
(1)7:( )=1.4 4.5:1.5=( )
(2)=( )÷8=( ):24=( )(填小数)
(3)一个圆的半径和直径的比是( );一个圆的周长和直径的比是( );两个圆的半径分别是3cm和5cm,它们的直径比是( ),周长比是( );面积比是( )。
(4)某班男生人数是女生人数的,女声人数与男生人数的比是( ):( );( )是比的前项,( )是比的后项,比值是( )。
2. 某小学的校园宽200米,画在平面图上是20厘米,量得校园长是300米,在这张图纸上应画多少厘米?
3.学校操场上有一条长200米的跑道,在一张图纸上用4厘米表示,这张图纸的比例尺是多少?
答案:
1.(1)5 3 (2) 3 9 0.375
(3)1:2 π:1 3:5 3:5 9:25
(4) 5:4 5 4 1.25
2. 200米 =20000厘米 20:20000=1:1000 300米=30000厘米
30000÷1000=30(厘米)
3. 200米=20000厘米 4:20000=1:5000
1. 化简下列比。
24:27???? 12:18???? 45:54??? 31:62?? 21:28
21∶35 0.65∶1.3
2. 六(2)班有男生20人,女生28人。(填最简分数或最简比)
(1)男生人数是女生人数的( )。
(2)女生人数是男生人数的( )。
(3)男生人数与女生人数的比是( ),比值是( )。
(4)女生人数与全班人数的比是( ),比值是( )。
答案:
1.8:9 2:3 5:6 1:2 3:4 3:5 1:2
2 . (1) 57 (2) 75 (3)5:7 57 (4)7:12 712
1. 求比值
48∶32 5∶1.4 0.15∶2.5 23 :35
2. 配制一种药水,在120克的水中放了5克的药粉。
(1)写出药粉与水的质量比,并化简。
(2)写出药粉与药水的质量比,并化简。
(3)写出水与药水的质量的比,并化简。
答案:
1.1.5 25/7 3/50 10/9
2.(1)5∶120=1∶24
(2)5∶125=1∶25
(3)120∶125=24∶25
公园里柳树和杨树的棵数比是5∶3,柳树和杨树共40棵,柳树和杨树各有多少棵?
把300个苹果按4∶5∶6分给幼儿园的小、中、大三个班.小班、中班、大班各分得多少个苹果?
3.一种药水是把药粉和水按照1∶100配制而成,要配制这种药水5050千克,需要药粉多少千克?
答案:
1.柳树:5+3=8 40×58=25(棵) 杨树:40×38=15(棵)
2. 4+5+6=15 小班:300×415=80(个)
中班:300×515=100(个)
大班:300×615=120(个)
3.1+100=101 药粉:5050×1101=50(千克)
1.35∶7化简后是( ),比值是( )。
2.白菜和西红柿的质量比是5∶7,白菜占总质量的( ),西红柿占总质量的( )。
3.一个长方形的周长是60 dm,长与宽的比是3∶2,则这个长方形的长是( )dm,宽是( )dm。
4.一个三角形三个内角的度数比是3∶4∶5,这个三角形三个内角的度数分数是( )、( )、( )。
5一个长方体的棱长之和是48厘米,长、宽、高的比是3:2:1。这个长方体的体积是多少立方厘米?
答案:
1. 5:1 5
2. 512 712
3.18 12
4. 45 60 75
5.48÷4=12(cm) 3+2+1=6
12×36 =6(cm) 12×26 =4(cm) 12×16 =2(cm)
6×4×2=48(cm3)
1.填空。
(1)( )叫做比例。
(2)( )叫做比例的项。( )叫做比例的外项,( )叫做比例的内项。
2.一个比例的两个外项互为倒数,一个内项是110 ,写出符合条件的两个比例 。
3. 写出几个比值是45 的比例。
答案:
1.(1)表示两个比相等的式子
(2) 组成比例的四个数 两端的两项 中间的两项
2. 3:110 = 10:13 5:10= 110:15
3. 4:5=8:10 0.8:1=8:10 32:40=80:100
1.判断下面哪组中的两个比可以组成比例。
(1)6∶9 和 8∶12
(2)14∶2 和 7∶10
2.根据比例的基本性质,在( )里填上适当的数。
(1)15∶3 =( ):1
(2)2∶0.5 =1.2 :( )
=
3.把下面的等式改写成比例。
3×40=8×15
答案:
(1)能组成比例 6:9=8:12 (2)不能组成比例
(1)5 (2) 3 (3)2.4
3:8=15:40 3:15=8:40 8:3=40:15 15:3=40:8
1.填空。
(1)在6 :5 = 1.2中,6是比的 ( ),5是比的 ( ),1.2是比的 ( )。
(2) 在4 :7 =48 :84中,4和84是比例的( ),7和48是比例的( )。
(3)4 :5 = 24 ÷( )= ( ):15
(4)一种盐水是由盐和水按1 :30 的质量配制而成的。其中,盐的质量占盐水的(— ),水的质量占盐水的( )。
2.判断题。
(1)两个比可以组成一个比例。( )
(2)任意两圆各自的周长和直径的比才都可以组成比例。( )
(3)x:16=7:6,求x的值叫做解比例。( )
3. 解比例。
25:7=X:35 9: 5= 27:x 27:X= 12:4
X:15=3: 5 34 :X= 4 :2 X :0.75 = 80:25
答案:
(1)前项 后项 比值 (2)外项 内项 (3) 30 12 (4)131 3031
× √ √
X=125 X=15 X= 9 X=9 X=17 X=2.4