北师大版八年级数学下册 第1章 1.1等腰三角形 一课一练 教材同步培优练习及解析

文档属性

名称 北师大版八年级数学下册 第1章 1.1等腰三角形 一课一练 教材同步培优练习及解析
格式 zip
文件大小 269.5KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2020-01-27 20:31:39

图片预览

文档简介

北师大版八年级数学下册 第1章 1.1等腰三角形 一课一练 教材同步培优练习及解析
一、选择题
1、如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是(  )
            
A.BD=CD B.AB=AC C.∠B=∠C D.∠BAD=∠CAD
2、 如图,△ABC≌△CDA,并且AB=CD,那么下列结论错误的是(  )


A.∠1=∠2 B.AC=CA C.∠D=∠B D.AC=BC
3、 如图,AB=AC=AD,若∠BAD=80°,则∠BCD=(  )

A.80°   B.100° C.140°   D.160°
4、如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有(  )

A.5个 B.4个 C.3个 D.2个
5、 用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中(  )
A.有一个内角大于60°
B.有一个内角小于60°
C.每一个内角都大于60°
D.每一个内角都小于60°
6、 如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3cm,则AB的长度是(  )

A.3cm  B.6cm C.9cm D.12cm
二、解答题
7、 等腰三角形的一个角等于30°,求它的顶角的度数.





8、 如图,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=125°.求∠ACB和∠BAC的度数.








9、 如图,△ABC中,AB=AC,D为AC上任意一点,延长BA到E使得AE=AD,连接DE,求证:DE⊥BC.





10、 如图,在△ABC中,AB=AC,CD⊥AB于点D,BE⊥AC于点E,求证:DE∥BC.






11、 如图,△ABC是等边三角形,E是AC上一点,D是BC延长线上一点,连接BE,DE.若∠ABE=40°,BE=DE,求∠CED的度数.




12、 如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:BM=EM.







13、 △ABC为正三角形,点M是边BC上任意一点,点N是边CA上任意一点,且BM=CN,BN与AM相交于Q点,求∠BQM的度数.





14、如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的角平分线,AE与CD交于点F,求证:△CEF是等腰三角形.




15、如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.
(1)求证:△DEF是等腰三角形;
(2)当∠A=50°时,求∠DEF的度数.






16、 求证:△ABC中不能有两个钝角.





17、 已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc-2b2,试说明△ABC是等边三角形.






18、如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.试判定△ODE的形状,并说明你的理由.





19、 如图,在△EBD中,EB=ED,点C在BD上,CE=CD,BE⊥CE,A是CE延长线上一点,AB=BC.试判断△ABC的形状,并证明你的结论.





20、 某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知AC=50m,AB=40m,∠BAC=150°,这种草皮每平方米的售价是a元,求购买这种草皮至少需要多少元?





参考答案
一、选择题
1、如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是(  )
            
A.BD=CD
B.AB=AC
C.∠B=∠C
D.∠BAD=∠CAD
解析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.A.∵∠1=∠2,AD为公共边,若BD=CD,则△ABD≌△ACD(SAS);B.∵∠1=∠2,AD为公共边,若AB=AC,不符合全等三角形判定定理,不能判定△ABD≌△ACD;C.∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);D.∵∠1=∠2,AD为公共边,若∠BAD=∠CAD,则△ABD≌△ACD(ASA);故选B.

2、 如图,△ABC≌△CDA,并且AB=CD,那么下列结论错误的是(  )


A.∠1=∠2 B.AC=CA
C.∠D=∠B D.AC=BC
解析:由△ABC≌△CDA,并且AB=CD,AC和CA是公共边,可知∠1和∠2,∠D和∠B是对应角.全等三角形的对应角相等,对应边相等,因而前三个选项一定正确.AC和BC不是对应边,不一定相等.∵△ABC≌△CDA,AB=CD,∴∠1和∠2,∠D和∠B是对应角,∴∠1=∠2,∠D=∠B,∴AC和CA是对应边,而不是BC,∴A、B、C正确,错误的结论是D.故选D.
方法总结:本题主要考查了全等三角形的性质;根据已知条件正确确定对应边、对应角是解决本题的关键.

3、 如图,AB=AC=AD,若∠BAD=80°,则∠BCD=(  )


A.80°   B.100°
C.140°   D.160°
解析:先根据已知和四边形的内角和为360°,可求∠B+∠BCD+∠D的度数,再根据等腰三角形的性质可得∠B=∠ACB,∠ACD=∠D,从而得到∠BCD的值.∵∠BAD=80°,∴∠B+∠BCD+∠D=280°.∵AB=AC=AD,∴∠B=∠ACB,∠ACD=∠D,∴∠BCD=280°÷2=140°,故选C.
方法总结:求角的度数时,①在等腰三角形中,一定要考虑三角形内角和定理;②有平行线时,要考虑平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补;③两条相交直线中,对顶角相等,互为邻补角的两角之和等于180°.
4、如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有(  )

A.5个 B.4个
C.3个 D.2个
解析:共有5个.(1)∵AB=AC,∴△ABC是等腰三角形;(2)∵BD、CE分别是∠ABC、∠BCD的角平分线,∴∠EBC=∠ABC,∠ECB=∠BCD.∵△ABC是等腰三角形,∴∠EBC=∠ECB,∴△BCE是等腰三角形;(3)∵∠A=36°,AB=AC,∴∠ABC=∠ACB=(180°-36°)=72°.又∵BD是∠ABC的角平分线,∴∠ABD=∠ABC=36°=∠A,∴△ABD是等腰三角形;同理可证△CDE和△BCD也是等腰三角形.故选A.
方法总结:确定等腰三角形的个数要先找出相等的边和相等的角,然后确定等腰三角形,再按顺序不重不漏地数出等腰三角形的个数.
5、 用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中(  )
A.有一个内角大于60°
B.有一个内角小于60°
C.每一个内角都大于60°
D.每一个内角都小于60°
解析:用反证法证明命题时,应先假设结论不成立,所以可先假设三角形中每一个内角都不小于或等于60°,即都大于60°.故选C.
方法总结:在假设结论不成立时,要注意考虑结论的反面所有可能的情况,必须把它全部否定.
6、 如图,在Rt△ABC中,∠ACB=90°,∠B=30°,CD是斜边AB上的高,AD=3cm,则AB的长度是(  )

A.3cm  B.6cm C.9cm D.12cm
解析:在Rt△ABC中,∵CD是斜边AB上的高,∴∠ADC=90°,∴∠ACD=∠B=30°.在Rt△ACD中,AC=2AD=6cm,在Rt△ABC中,AB=2AC=12cm.∴AB的长度是12cm.故选D.
方法总结:运用含30°角的直角三角形的性质求线段长时,要分清线段所在的直角三角形.
二、解答题
7、 等腰三角形的一个角等于30°,求它的顶角的度数.
解析:本题可根据等腰三角形的性质和三角形内角和定理求解,由于本题中没有明确30°角是顶角还是底角,因此要分类讨论.
解:①当底角是30°时,顶角的度数为180°-2×30°=120°;
②顶角即为30°.
因此等腰三角形的顶角的度数为30°或120°.
方法总结:已知的一个锐角可以是等腰三角形的顶角,也可以是底角;一个钝角只能是等腰三角形的顶角.分类讨论是正确解答本题的关键.
8、 如图,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=125°.求∠ACB和∠BAC的度数.

解析:根据等腰三角形三线合一的性质可得AE⊥BC,再求出∠CDE,然后根据直角三角形两锐角互余求出∠DCE,根据角平分线的定义求出∠ACB,再根据等腰三角形两底角相等列式进行计算即可求出∠BAC.
解:∵AB=AC,AE平分∠BAC,∴AE⊥BC.∵∠ADC=125°,∴∠CDE=55°,∴∠DCE=90°-∠CDE=35°.又∵CD平分∠ACB,∴∠ACB=2∠DCE=70°.又∵AB=AC,∴∠B=∠ACB=70°,∴∠BAC=180-(∠B+∠ACB)=40°.
方法总结:利用等腰三角形“三线合一”的性质进行计算,有两种类型:一是求边长,求边长时应利用等腰三角形的底边上的中线与其他两线互相重合;二是求角度的大小,求角度时,应利用等腰三角形的顶角的平分线或底边上的高与其他两线互相重合.
9、 如图,△ABC中,AB=AC,D为AC上任意一点,延长BA到E使得AE=AD,连接DE,求证:DE⊥BC.


解析:作AF∥DE,交BC于点F.利用等边对等角及平行线的性质证明∠BAF=∠FAC.在△ABC中由“三线合一”得AF⊥BC.再结合AF∥DE可得出结论.
证明:过点A作AF∥DE,交BC于点F.
∵AE=AD,∴∠E=∠ADE.
∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.
∴∠BAF=∠FAC.
又∵AB=AC,∴AF⊥BC.
∵AF∥DE,∴DE⊥BC.
方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.
10、 如图,在△ABC中,AB=AC,CD⊥AB于点D,BE⊥AC于点E,求证:DE∥BC.


证明:因为AB=AC,所以∠ABC=∠ACB.又因为CD⊥AB于点D,BE⊥AC于点E,所以∠AEB=∠ADC=90°,所以∠ABE=∠ACD,所以∠ABC-∠ABE=∠ACB-∠ACD,所以∠EBC=∠DCB.在△BEC与△CDB中,所以△BEC≌△CDB,所以BD=CE,所以AB-BD=AC-CE,即AD=AE,所以∠ADE=∠AED.又因为∠A是△ADE和△ABC的顶角,所以∠ADE=∠ABC,所以DE∥BC.
方法总结:等腰三角形两底角的平分线相等,两腰上的中线相等,两腰上的高相等.
11、 如图,△ABC是等边三角形,E是AC上一点,D是BC延长线上一点,连接BE,DE.若∠ABE=40°,BE=DE,求∠CED的度数.

解析:因为△ABC三个内角为60°,∠ABE=40°,求出∠EBC的度数,因为BE=DE,所以得到∠EBC=∠D,求出∠D的度数,利用外角性质即可求出∠CED的度数.
解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵∠ABE=40°,∴∠EBC=∠ABC-∠ABE=60°-40°=20°.∵BE=DE,∴∠D=∠EBC=20°,∴∠CED=∠ACB-∠D=40°.
方法总结:等边三角形是特殊的三角形,它的三个内角都是60°,这个性质常常应用在求三角形角度的问题上,所以必须熟练掌握.
12、 如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:BM=EM.


解析:要证BM=EM,由题意证△BDM≌△EDM即可.
证明:连接BD,∵在等边△ABC中,D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°.∵CE=CD,∴∠CDE=∠E.∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°.∵DM⊥BC,∴∠DMB=∠DME=90°,在△DMB和△DME中,∴△DME≌△DMB.∴BM=EM.
方法总结:证明线段相等可利用三角形全等得到.还应明白等边三角形是特殊的等腰三角形,所以等腰三角形的性质完全适合等边三角形.
13、 △ABC为正三角形,点M是边BC上任意一点,点N是边CA上任意一点,且BM=CN,BN与AM相交于Q点,求∠BQM的度数.

解析:先根据已知条件利用SAS判定△ABM≌△BCN,再根据全等三角形的性质求得∠AQN=∠ABC=60°.
解:∵△ABC为正三角形,∴∠ABC=∠C=∠BAC=60°,AB=BC.在△AMB和△BNC中,∵∴△AMB≌△BNC(SAS),
∴∠BAM=∠CBN,∴∠BQM=∠ABQ+∠BAM=∠ABQ+∠CBN=∠ABC=60°.
方法总结:等边三角形与全等三角形的综合运用,一般是利用等边三角形的性质探究三角形全等.

14、如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的角平分线,AE与CD交于点F,求证:△CEF是等腰三角形.

解析:根据直角三角形两锐角互余求得∠ABE=∠ACD,然后根据三角形外角的性质求得∠CEF=∠CFE,根据等角对等边求得CE=CF,从而求得△CEF是等腰三角形.
解:∵在△ABC中,∠ACB=90°,∴∠B+∠BAC=90°.∵CD是AB边上的高,∴∠ACD+∠BAC=90°,∴∠B=∠ACD.∵AE是∠BAC的角平分线,∴∠BAE=∠EAC,∴∠B+∠BAE=∠AEC,∠ACD+∠EAC=∠CFE,即∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.
方法总结:“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.
15、如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.
(1)求证:△DEF是等腰三角形;
(2)当∠A=50°时,求∠DEF的度数.


解析:(1)根据等边对等角可得∠B=∠C,利用“边角边”证明△BDE和△CEF全等,根据全等三角形对应边相等可得DE=EF,再根据等腰三角形的定义证明即可;(2)根据全等三角形对应角相等可得∠BDE=∠CEF,然后求出∠BED+∠CEF=∠BED+∠BDE,再利用三角形的内角和定理和平角的定义求出∠B=∠DEF.
(1)证明:∵AB=AC,∴∠B=∠C.在△BDE和△CEF中,∵∴△BDE≌△CEF(SAS),∴DE=EF,∴△DEF是等腰三角形;
(2)解:∵△BDE≌△CEF,∴∠BDE=∠CEF,∴∠BED+∠CEF=∠BED+∠BDE.∵∠B+∠BDE=∠DEF+∠CEF,∴∠B=∠DEF.∵∠A=50°,AB=AC,∴∠B=×(180°-50°)=65°,∴∠DEF=65°.
方法总结:等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.
16、 求证:△ABC中不能有两个钝角.
解析:用反证法证明,假设△ABC中能有两个钝角,得出的结论与三角形的内角和定理相矛盾,所以原命题正确.
证明:假设△ABC中能有两个钝角,即∠A<90°,∠B>90°,∠C>90°,
所以∠A+∠B+∠C>180°,与三角形的内角和为180°矛盾,所以假设不成立,因此原命题正确,即△ABC中不能有两个钝角.
方法总结:本题结合三角形内角和定理考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况.如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
17、 已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc-2b2,试说明△ABC是等边三角形.
解析:把已知的关系式化为两个完全平方的和等于0的形式求解.
解:移项得a2+c2-2ab-2bc+2b2=0,
∴a2+b2-2ab+c2-2bc+b2=0,
∴(a-b)2+(b-c)2=0,
∴a-b=0且b-c=0,即a=b且b=c,
∴a=b=c.
故△ABC是等边三角形.
方法总结:(1)几个非负数的和为零,那么每一个非负数都等于零;(2)有两边相等的三角形是等腰三角形,三边都相等的三角形是等边三角形,等边三角形是特殊的等腰三角形.
18、如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.试判定△ODE的形状,并说明你的理由.

解析:根据平行线的性质及等边三角形的性质可得∠ODE=∠OED=60°,再根据三角形内角和定理得∠DOE=60°,从而可得△ODE是等边三角形.
解:△ODE是等边三角形,
理由如下:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.
∵OD∥AB,OE∥AC,∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°.
∴∠DOE=180°-∠ODE-∠OED=180°-60°-60°=60°.
∴∠DOE=∠ODE=∠OED=60°.
∴△ODE是等边三角形.
方法总结:证明一个三角形是等边三角形时,如果较易求出角的度数,那么就可以分别求出这个三角形的三个角都等于60°,从而判定这个三角形是等边三角形.
19、 如图,在△EBD中,EB=ED,点C在BD上,CE=CD,BE⊥CE,A是CE延长线上一点,AB=BC.试判断△ABC的形状,并证明你的结论.

解析:由于EB=ED,CE=CD,根据等边对等角及三角形外角性质,可求得∠CBE=∠ECB.再由BE⊥CE,根据三角形内角和定理,可求得∠ECB=60°.又∵AB=BC,从而得出△ABC是等边三角形.
解:△ABC是等边三角形.
理由如下:∵CE=CD,∴∠CED=∠D.
又∵∠ECB=∠CED+∠D.∴∠ECB=2∠D.
∵BE=DE,∴∠CBE=∠D.∴∠ECB=2∠CBE.∴∠CBE=∠ECB.
∵BE⊥CE,∴∠CEB=90°.
又∵∠ECB+∠CBE+∠CEB=180°,∴∠ECB+∠ECB+90°=180°,∴∠ECB=60°.
又∵AB=BC,∴△ABC是等边三角形.
方法总结:(1)已知一个三角形中两边相等,要证明这个三角形是等边三角形,有两种思考方法:①证明另一边也与这两边相等;②证明这个三角形中有一个角等于60°.(2)已知一个三角形中有一个角等于60°,要证明这个三角形是等边三角形,有两种思考方法:①证明另外两个角也等于60°;②证明这个三角形中有两边相等.

20、 某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知AC=50m,AB=40m,∠BAC=150°,这种草皮每平方米的售价是a元,求购买这种草皮至少需要多少元?

解析:作BD⊥CA交CA的延长线于点D.在Rt△ABD中,利用30°角所对的直角边是斜边的一半求BD,即△ABC的高.运用三角形面积公式计算面积求解.
解:如图所示,过点B作BD⊥CA交CA的延长线于点D.∵∠BAC=150°,∴∠DAB=30°.∵AB=40m,∴BD=AB=20m,∴S△ABC=×50×20=500(m2).∵这种草皮每平方米a元,∴一共需要500a元.
方法总结:解此题的关键在于作出CA边上的高,根据相关的性质求BD的长,正确的计算出△ABC的面积.