六年级数学下册教案- 4.1.1 比例的意义 -人教新课标

文档属性

名称 六年级数学下册教案- 4.1.1 比例的意义 -人教新课标
格式 zip
文件大小 766.0KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2020-01-28 10:00:04

图片预览

文档简介

《比例的意义》教学设计
教学内容:新人教版数学六年级下册第四单元40页。
教学目标:
1.使学生理解比例的意义,学会应用比例的意义判断两个比能否组成比例,并能正确的组成比例。
2.通过观察、计算、比较等活动,让学生理解并概括出比例的意义。
3.使学生感受数学知识的在实际生活中的应用,学会综合运用所学知识,增强分析问题和解决问题的能力。
学情分析:
《比例的意义》是在学生掌握了比的知识以及比的基本性质的基础上进行教学的。学习本节教材,不仅要使学生记住概念的描述,更重要的是理解概念,而理解概念,关键是要理解知识的本质和要素。比例的意义在教学方面有两个层面的意思,一方面是它形式化的定义,比例表示两个比相等的式子;另一个层面是,如果两个比组成比例,它代表了什么,这就需要建立生活化的联系。教学中给学生提供有效的材料,让学生判断、思考并表达思维过程,促进理解,为后续学习作好铺垫,还要进一步发展学生发现问题和解决问题的能力,为进一步学习打下基础。
教学重难点:使学生理解比例的实际意义,并学会判断两个比能否组成比例。
教学过程:
一、自主探究,揭示意义。
活动一:国旗一家人
出示场景,直观感受。
师:同学们,每一个国家都有国旗,国旗代表着一个国家的象征。在我们学校的教室里都有一面这样的国旗(出示图片),还有摆在桌上这么小的国旗,这是学校操场上的国旗,这是?(出示天安前的国旗)。
2.出示数据,引发探究。
师:同学们,仔细观察,这些都是国旗,他们的大小都是不一样的,那有什么相同的地方吗?
预设:
(1)都是红色的,都有5颗星星,都是长方形等。如果学生只说到都是长方形的,没有说出形状相同,那么教师追问:都是长方形的?是长方形的就可以了吗?同学们,我们来看看其实国旗长和宽的数据都是规定的。(然后出示4个场合每一面国旗上的长宽数据)看到这些数据以后,你能找到它们隐藏着什么样的数学秘密了吗?
(2)如果学生说到国旗形状相同。教师直接追问:形状相同?是这样的吗?其实这些国旗长和宽的数据都是规定的,我们来看看。同学们,看起来大小不同的国旗,形状是相同的,这里面到底隐藏着什么样的数学秘密呢?(分别出示四面国旗的数据)
学生思考片刻后,教师:把你的想法写在作业纸上。(巡视2分钟左右)把你的想法说给你的同桌听。
交流反馈。
师:你发现了怎样的数学秘密?
生:我发现4面国旗的长:宽=3:2(长与宽的比值都是一样的)。
师:是这样的吗?
生:5:10/3=3/2 2.4:1.6=3/2 60:40=3/2 15:10=3/2(全班交流)
教师总结。
师:同学们,你们可真厉害,通过观察和计算,我们发现了国旗形状相同的秘密,也就是长与宽的比值都相等。实际上,我们国家国旗的标准就是长和宽的比是3:2,也就是比值都是3/2。像这样,有大有小,但它们的形状相同,我们可以说是一家人。
活动二:找三角形一家人
出示7个三角形(无方格图)
师:同学们,我们来看一看,这些都是三角形,是个大家庭,你们仔细找找看,哪些三角形又可以成为一家人?
预设:5个直角三角形是一家人。
师追问:原来直角三角形是大家庭中的一个小家庭,那么在直角三角形这个小家庭中,我们找找看,谁和谁又可以成为一家人呢?
出示5个直角三角形(有方格图)
师:拿出练习纸,让我们仔细找一找,把你找到的,写在练习纸上。
学生独立尝试,教师巡视。
师:你认为谁和谁是一家人?
预设:1号和5号是一家人,3号和4号是一家人。
师:凭什么说1号和5号是一家人呢?
生:1号三角形:短的直角边:长的直角边=3:4,5号三角形:短的直角边:长的直角边=6:8。比值相等,都是3/4,所以是一家人。
师:3号三角形和4号三角形呢?
生:3号三角形:短的直角边:长的直角边=2:4,4号三角形:短的直角边:长的直角边=3:6,比值相等,都是1/2,是一家人。
板书: 3:4=3/4 6:8=3/4
2:4=1/2 3:6=1/2
小结并揭示比例意义。
师:同学们,通过计算我们找到了形状相等的三角形一家人。(指着板书)像这样比值相等的两个比,我们可以用等号连接起来,写成一个等式(板书:3:4=6:8),这就是比例(板书:比例)。这个能组成比例吗?(能)(板书:2:4=3:6)
4.介绍比例的各部分名称。
师:同学们,比有各部分名称,那么比例也有它的各部分名称,让我们一起来认识一下。
介绍比例的内项,外项以及分数形式的写法。(对角)
5.学生自主尝试写比例。
师:同学们,我们来看看,黑板上还有很多这样的比,这些比的比值也都是相等的(指着黑板上的四个比),能写出比例来吗?(能)老师给你1分钟,看看谁写得又多又快。
学生尝试写比例。
师:你写的比例是什么?
预设:5:10=2.4:1.6 60:40=15:10等。
师:同学们,刚才我们根据国旗长和宽的比值相等,写出了很多比例,说明这些国旗虽然它们的大小不同,但是它们的形状是相同的。直角三角形呢?(生表述也是一样的。)(教师板书:形状相同)
巩固练习,深化意义
师:同学们,接下来,让我们一起来看看比例在生活中的运用。
(1)出示题目:
师:小红按配方说明自己动手配制了几份橙汁饮料,我们一起来看看:
师:你觉得小红配制的饮料口味是一样的吗?你怎么来说明?
生1:不一样。第一种和第三种都是1份原汁配4份水。第二种是1份原汁配5份水。所以第一种和第三种口味一样,第二种口味不一样。
生2:不一样,第一种和第三种都是原汁:水=1:4,比值相等,第二种是原汁:水=1:5,所以口味不一样。
教师追问:也就是说第一种和第二种口味相同,可以组成比例式是?
生:40:160=60:240
师:饮料能组成比例,说明了什么?
生:口味相同,配方相同或者浓度一样。
师:那第二种的饮料口味不一样,淡了还是浓了?如果也要口味一样的话,可以怎么配方呢?
生:按原汁:水=1:4的比来配制。
出示表格:
师:观察表格中的数据,能组成比例吗?如果能,把组成的比例写出来。让我们拿出练习纸先算一算,再写一写。
学生自主尝试,教师巡视。(出示学生作业纸)
师:(出示第一题)能组成比例吗?理由呢?
生:能组成比例,因为总价和数量的比值相等,比值都是90。
师:总价和单价如果组成比例,说明什么?
生:单价是相同的。
师:(出示第二题)能组成比例吗?
生:能组成比例,因为路程和时间的比值相等,比值都是15。
师:路程和时间如果组成比例,说明什么?
生:速度是相同的。
师(出示第三题)为什么不能组成比例?
生:因为年龄和身高的比值不相等。
师:想一想,如果年龄和身高要是真的能组成比例?会怎么样呢?
生1:同一个人,随着他的年龄越来越大,身高也会越来越高。
生2:不同的人之间,如果年龄相同,身高也都是相同的。
师:看来身高和年龄是不可能成比例的,实际上聪明的小朋友想想都知道结果了。
(3)总结归纳。
师总结:同学们,通过刚才的练习,我们发现像原汁和水这样能组成比例的,说明它们的口味相同,总价和数量组成比例的,说明单价相同,路程和时间呢?(组成比例,速度相同),这就是比例在实际生活中的意义。(板书:比例的意义)
联系生活,延伸拓展
1.学生生活化的举例。
师:想一想,在生活中,你觉得哪些地方也用到了比例?
(如果学生想不到,可以提示孩子们翻阅教科书的42页、43页)
预设:照片按一定比例放大和缩小,地图按一定的比例放大和缩小,投影仪按一定的比例来放大和缩小,测量树高和旗杆高度等。
师:同学们,刚才你们举了很多生活中和比例有关的例子,那么让我们来看看,生活中你见过这样的现象吗?(出示竹竿和影子)
师:这是一根竹竿,它的高度是2米,在太阳下,测得它的影长是1.5m。那么一根1m长的竹竿,它的影长是多少呢?(生:0.75m)那3米长的竹竿呢?(生:2.25m)
师:同学们,的确在同一时间,同一地点,竹竿的高度和它的影长是成比例的。
2.比例在生活中的实际运用。
师:同学们,我们校园里的旗杆高度比较难测,你有没有什么好的办法测量出来?我们可以在4人小组里交流一下。
生:用一根竹竿,在同一时间,同一地点,测量出小木桩的高度和影长,再测量旗杆的影长,我们知道在同一时间内,物体的高度和它的影长组成了比例,这样就可以根据比例来算出旗杆的高度了。
师:谁听明白了,也来说一说。
师:同学们,刚才你们想到的好办法同样也能解决测量金字塔高度的问题。
(3)总结归纳。
师:早在2600多年前,有一个叫泰勒斯的科学家就运用了今天我们所学的数学知识测出来金字塔的高度,同学们,一些看似很难的数学问题,运用所学的知识可以很好的来解决,看来学习数学是非常有用的!
五、回顾反思,总结收获
师:同学们,今天这节课我们一起学习了(比例)?知道了什么是比例?比例的意义?关于比例,你还想知道些什么?
师:同学们,在接下来的学习中,我们还将学习更多关于比例的知识,相信同学们只要善于观察,勤于思考,乐于交流,一定会运用所学的知识来解决更多的问题。
板书设计:
比例的意义
5:10/3=3/2 3:4=3/4 2:4=1/2 形状相同
2.4:1.6=3/2 6:8=3/4 3:6=1/2 配方相同
60:40=3/2 内项 2:4=3:6 单价相同
15:10=3/2 3:4=6:8 40:160=60:240 速度相同
外项 …
3 2
4 6