5.1 相交线
5.1.1 相交线
教学目标
【知识与技能】
1.能结合具体的图形找出邻补角和对顶角,进而理解邻补角和对顶角的定义;
2.理解对顶角的性质;
3.能运用邻补角的性质、对顶角的性质进行简单的推理或计算.
【过程与方法】
通过画图、看图、归纳等掌握邻补角、对顶角的概念;通过先观察,再猜想,最后再推理的方法掌握“对顶角相等”这一重要定理.
【情感态度】
经历画图、看图、猜想、推理等过程,初步体会几何学习的基本方法.
【教学重点】
邻补角、对顶角的概念,对顶角的性质.
【教学难点】
1.邻补角与补角的区别与联系.
2.初步体验推理的方法.
教学过程
一、创设情境,引入课题
问题:请同学们观察下面的图片,说一说那些道路是交错的,那些是平行的?
教师导入:图中的道路是有宽度的,是有限长的,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题.
二、合作探究
探究点一:对顶角和邻补角的概念
【类型一】 对顶角的识别
下列图形中∠1与∠2互为对顶角的是( )
解析:观察∠1与∠2的位置特征,只有C中∠1和∠2同时满足有公共顶点,且∠1的两边是∠2的两边的反向延长线.故选C.
方法总结:判断对顶角只看两点:①有公共顶点;②一个角的两边分别是另一个角的两边的反向延长线.
【类型二】 邻补角的识别
如图所示,直线AB和CD相交所成的四个角中,∠1的邻补角是________.
解析:根据邻补角的概念判断:有一个公共顶点、一条公共边,另一边互为延长线.∠1和∠2、∠1和∠4都满足有一个公共顶点和一条公共边,另一边互为延长线,故为邻补角.故答案为∠2和∠4.
方法总结:邻补角的定义包含了两层含义:相邻且互补.但需要注意的是:互为邻补角的两个角一定互补,但互补的角不一定是邻补角.
探究点二:对顶角的性质
【类型一】 利用对顶角的性质求角的度数
如图,直线AB、CD相交于点O,若∠BOD=42°,OA平分∠COE,求∠DOE的度数.
解析:根据对顶角的性质,可得∠AOC与∠BOD的关系,根据OA平分∠COE,可得∠COE与∠AOC的关系,根据邻补角的性质,可得答案.
解:由对顶角相等得∠AOC=∠BOD=42°.∵OA平分∠COE,∴∠COE=2∠AOC=84°.由邻补角的性质得∠DOE=180°-∠COE=180°-84°=96°.
方法总结:解决此类问题的关键是在图中找出对顶角和邻补角,根据两种角的性质找出已知角和未知角之间的数量关系.
【类型二】 结合方程思想求角度
如图,直线AC,EF相交于点O,OD是∠AOB的平分线,OE在∠BOC内,∠BOE=∠EOC,∠DOE=72°,求∠AOF的度数.
解析:因为已知量与未知量的关系较复杂,所以想到列方程解答,根据观察可设∠BOE=x,则∠AOF=∠EOC=2x,然后根据对顶角和邻补角找到等量关系,列方程.
解:设∠BOE=x,则∠AOF=∠EOC=2x.∵∠AOB与∠BOC互为邻补角,∴∠AOB=180°-3x.∵OD平分∠AOB,∴∠DOB=∠AOB=90°-x.∵∠DOE=72°,∴90°-x+x=72°,解得x=36°.∴∠AOF=2x=72°.
方法总结:在相交线中求角的度数时,就要考虑使用对顶角相等或邻补角互补.若已知关系较复杂,比如出现比例或倍分关系时,可列方程解决角度问题.
【类型三】 应用对顶角的性质解决实际问题
如图,要测量两堵墙所形成的∠AOB的度数,但人不能进入围墙,如何测量?请你写出测量方法,并说明几何道理.
解析:可以利用对顶角相等的性质,把∠AOB转化到另外一个角上.
解:反向延长射线OB到E,反向延长射线OA到F,则∠EOF和∠AOB是对顶角,所以可以测量出∠EOF的度数,∠EOF的度数就是∠AOB的度数.
方法总结:解决此类问题的关键是根据对顶角的性质把不能测量的角进行转化.
探究点三:与对顶角有关的探究问题
我们知道:两直线交于一点,对顶角有2对;三条直线交于一点,对顶角有6对;四条直线交于一点,对顶角有12对……
(1)10条直线交于一点,对顶角有________对;
(2)n(n≥2)条直线交于一点,对顶角有________对.
解析:(1)仔细观察计算对顶角对数的式子,发现式子不变的部分及变的部分的规律,得出结论,代入数据求解.如图①,两条直线交于一点,图中共有=2对对顶角;如图②,三条直线交于一点,图中共有=6对对顶角;如图③,四条直线交于一点,图中共有=12对对顶角……按这样的规律,10条直线交于一点,那么对顶角共有=90(对).故答案为90;
(2)利用(1)中规律得出答案即可.由(1)得n(n≥2)条直线交于一点,对顶角的对数为=n(n-1).故答案为n(n-1).
方法总结:解决探索规律的问题,应全面分析所给的数据,特别要注意观察符号的变化规律,发现数据的变化特征.
当堂练习
1.(1)若∠1与∠2是对顶角,∠1=16?,则∠2=______?;
???(2)若∠3与∠4是邻补角,则∠3+∠4?=______?.
2.若∠1与∠2为对顶角,∠1与∠3互补,则∠2+∠3=????????????.
3.要测量两堵围墙所形成的∠AOB的度数,但人不能进入围墙,如何测量?
三、板书设计
两条直线相交求角的大小
教学反思
本节课通过对学生身边熟悉的事物引入,让学生感受到生活中处处有数学,数学与我们的生活密不可分;学生经历合作探究过程获得新知,并能用所学的新知识来解决实际问题.这样教学更能激发学生学习数学的兴趣,提升学生的能力,促进学生的发展