第2课时 平行线的性质和判定及其综合运用
教学目标
【知识与技能】
1.掌握平行线的性质定理.
2.综合运用平行线的判定及性质进行简单的证明或计算.
【过程与方法】
1.经历猜想、实践、探究不难得到平行线的性质定理.在此基础上,结合前节的知识,进行简单的证明或计算.
2.培养学生逆向思维的能力.
【情感态度】
培养学生逆向思维的能力.
【教学重点】
掌握平行线的性质定理,综合运用平行线的判定及性质进行简单的证明或计算.
【教学难点】
综合运用平行线的判定及性质进行简单的证明或计算.
教学过程
一、复习引入
问题:平行线的判定与平行线的性质的区别是什么?
判定是已知角的关系得平行关系,性质是已知平行关系得角的关系.
两者的条件和结论刚好相反,也就是说平行线的判定与性质是互逆的.
二、合作探究
探究点一:先用判定再用性质
如图,C,D是直线AB上两点,∠1+∠2=180°,DE平分∠CDF,EF∥AB.
(1)CE与DF平行吗?为什么?
(2)若∠DCE=130°,求∠DEF的度数.
解析:(1)由∠1+∠DCE=180°,∠1+∠2=180°,可得∠2=∠DCE,即可证明CE∥DF;
(2)由平行线的性质,可得∠CDF=50°.由DE平分∠CDF,可得∠CDE=∠CDF=25°.最后根据“两直线平行,内错角相等”,可得到∠DEF的度数.
解:(1)CE∥DF.理由如下:∵∠1+∠2=180°,∠1+∠DCE=180°,∴∠2=∠DCE,∴CE∥DF;
(2)∵CE∥DF,∠DCE=130°,∴∠CDF=180°-∠DCE=180°-130°=50°.∵DE平分∠CDF,∴∠CDE=∠CDF=25°.∵EF∥AB,∴∠DEF=∠CDE=25°.
方法总结:根据题目中的数量找出各量之间的关系是解这类问题的关键.从角的关系得到直线平行用平行线的判定,从平行线得到角相等或互补的关系用平行线的性质,二者不要混淆.
探究点二:先用性质再用判定
如图,已知DF∥AC,∠C=∠D,CE与BD有怎样的位置关系?说明理由.
解析:由图可知∠ABD和∠ACE是同位角,只要证得同位角相等,则CE∥BD.由平行线的性质结合已知条件,稍作转化即可得到∠ABD=∠C.
解:CE∥BD.理由如下:∵DF∥AC,∴∠D=∠ABD.∵∠C=∠D,∴∠ABD=∠C,∴CE∥BD.
方法总结:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.
探究点三:平行线性质与判定中的探究型问题
如图,AB∥CD,E,F分别是AB,CD之间的两点,且∠BAF=2∠EAF,∠CDF=2∠EDF.
(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并说明理由;
(2)∠AFD与∠AED之间有怎样的数量关系?
解析:平行线中的拐点问题,通常需过拐点作平行线.
解:(1)∠AED=∠BAE+∠CDE.理由如下:如图,过点E作EG∥AB.∵AB∥CD,∴AB∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;
(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=∠BAF+∠CDF=(∠BAF+∠CDF)=∠AFD,∴∠AED=∠AFD.
方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.
当堂检测
1.如图,已知AB∥CD,AD∥BC,∠A与∠C有怎样的大小关系,为什么?
2.已知AB∥CD,直线EF分别交AB,CD于M,N,MP平分∠EMA,NQ平分∠MNC,那么MP∥NQ,为什么?
3.将两张矩形纸片如图所示摆放,使其中一张矩形纸片的一个顶点恰好落在另一张矩形纸片的一条边上,则∠1+∠2=_____.
第3题图 第4题图
4.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠BCD=_____.
5.(江西中考)一大门的栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD=_____度.
【教学说明】题1、2可让学生独立思考完成.题3、4可让同学们分组讨论、交流,有困难时,教师给予提示指导,如何作辅助线.题5与生活实际联系,让学生拓展思维.
【答案】1.解:∠A=∠C,理由如下:
AB∥CD,∠A与∠D为同旁内角,
即∠A+∠D=180°;
AD∥BC,∠D与∠C为同旁内角,
即∠D+∠C=180°.
所以∠A+∠D=∠D+∠C,即∠A=∠C.
2.解:AB∥CD,∠EMA与∠MNC为同位角,即∠EMA=∠MNC.
MP平分∠EMA,NQ平分∠MNC,则∠EMP=∠EMA,∠MNQ=∠MNC.
所以∠EMP=∠MNQ,则MP∥NQ.
3.90° 解析:如图,经点F作AB的平行线,则∠1与∠3,∠2与∠4为内错角.
根据平行线的性质得∠1=∠3,∠2=∠4,所以∠1+∠2=∠3+∠4=∠EFH=90°.
4.40° 解析:如图,过点C作GH∥DE.
所以∠DCH+∠CDE=180°(两直线平行,同旁内角互补).
因为∠CDE=140°(已知),
所以∠DCH=180°-∠CDE=40°.
又因为AB∥DE(已知),
所以AB∥GH(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).
所以∠ABC=∠BCH(两直线平行,内错角相等).
因为∠ABC=80°(已知),
所以∠BCH=80°(等量代换).
所以∠BCD=∠BCH-∠DCH=40°.
5.270 解析:如图,过B作BG∥CD,则∠CBG+∠BCD=180°,∠ABG=90°,于是可得∠ABC+∠BCD=90°+180°=270°.
三、板书设计
两直线平行
教学反思
本节内容的重点是平行线的性质及判定的综合,直接运用了“∵”“∴”的推理形式,为学生创设了一个学习推理的环境,逐步培养学生的逻辑推理能力.因此,这一节课有着承上启下的作用,比较重要.本节内容的难点是理解平行线的性质和判定的区别,并在推理中正确地应用.由于学生还没有学习命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,所以在教学中,应让学生通过应用和讨论,体会到如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果两直线平行,得出角的关系,就是平行线的性质