1.4 整式的乘法
第1课时 单项式与单项式相乘
教学目标
【知识与技能】
使学生理解并掌握单项式与单项式相乘的法则,能够熟练地进行单项式的乘法计算.
【过程与方法】
通过探究单项式与单项式相乘的法则,培养了学生归纳、概括能力,以及运算能力.
【情感态度】
通过单项式的乘法法则在生活中的应用培养学生的应用意识.
【教学重点】
掌握单项式与单项式相乘的法则.
【教学难点】
分清单项式与单项式相乘中,幂的运算法则.
教学过程
一、情境导入
根据乘法的运算律计算:
(1)2x·3y;(2)5a2b·(-2ab2).
解:(1)2x·3y=(2×3)·(x·y)=6xy;
(2)5a2b·(-2ab2)=5×(-2)·(a2·a)·(b·b2)=-10a3b3.
观察上述运算,你能归纳出单项式乘法的运算法则吗?
二、合作探究
探究点:单项式与单项式相乘
【类型一】 直接利用单项式乘以单项式法则进行计算
计算:
(1)(-a2b)·ac2;
(2)(-x2y)3·3xy2·(2xy2)2;
(3)-6m2n·(x-y)3·mn2(y-x)2.
解析:运用幂的运算法则和单项式乘以单项式的法则计算即可.
解:(1)(-a2b)·ac2=-×a3bc2=-a3bc2;
(2)(-x2y)3·3xy2·(2xy2)2=-x6y3×3xy2×4x2y4=-x9y9;
(3)-6m2n·(x-y)3·mn2(y-x)2=-6×m3n3(x-y)5=-2m3n3(x-y)5.
方法总结:(1)在计算时,应先进行符号运算,积的系数等于各因式系数的积;(2)注意按顺序运算;(3)不要丢掉只在一个单项式里含有的字母因式;(4)此性质对于多个单项式相乘仍然成立.
【类型二】 单项式乘以单项式与同类项的综合
已知-2x3m+1y2n与7x5m-3y5n-4的积与x4y是同类项,求m2+n的值.
解析:根据-2x3m+1y2n与7x5m-3y5n-4的积与x4y是同类项可得出关于m,n的方程组,进而求出m,n的值,即可得出答案.
解:∵-2x3m+1y2n与7x5m-3y5n-4的积与x4y是同类项,∴解得∴m2+n=.
方法总结:掌握单项式乘以单项式的运算法则,再结合同类项,列出二元一次方程组是解题关键.
【类型三】 单项式乘以单项式的实际应用
有一块长为xm,宽为ym的长方形空地,现在要在这块地中规划一块长xm,宽ym的长方形空地用于绿化,求绿化的面积和剩下的面积.
解析:先求出长方形的面积,再求出绿化的面积,两者相减即可求出剩下的面积.
解:长方形的面积是xym2,绿化的面积是x×y=xy(m2),则剩下的面积是xy-xy=xy(m2).
方法总结:掌握长方形的面积公式和单项式乘单项式法则是解题的关键.
三、板书设计
1.单项式乘以单项式的运算法则:
单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里面含有的字母,则连同它的指数作为积的一个因式.
2.单项式乘以单项式的应用
教学反思
本课时的重点是让学生理解单项式的乘法法则并能熟练应用.要求学生在乘法的运算律以及幂的运算律的基础上进行探究.教师在课堂上应该处于引导位置,鼓励学生“试一试”,学生通过动手操作,能够更为直接的理解和应用该知识点