北师大版七年级数学下册1.4 整式的乘法 第3课时多项式与多项式相乘 教案

文档属性

名称 北师大版七年级数学下册1.4 整式的乘法 第3课时多项式与多项式相乘 教案
格式 zip
文件大小 1.0MB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2020-01-30 14:30:10

图片预览

文档简介







第3课时 多项式与多项式相乘
教学目标
【知识与技能】
在具体情境中了解多项式乘法的意义,会利用法则进行简单的多项式乘法运算.
【过程与方法】
经历探索多项式与多项式乘法法则的过程,理解多项式与多项式相乘的运算算理,体会乘法分配律的作用及转化思想在解决问题过程中的应用,发展学生有条理的思考和语言表达能力.
【情感态度】
在解决问题的过程中了解数学的价值,发展“用数学”的信心.
【教学重点】
熟悉多项式与多项式乘法法则.
【教学难点】
理解多项式与多项式相乘的算理.
教学过程
一、情境导入
某地区在退耕还林期间,将一块长m米、宽a米的长方形林区的长、宽分别增加n米和b米.用两种方法表示这块林区现在的面积.
学生积极思考,教师引导学生分析,学生发现:
这块林区现在长为(m+n)米,宽为(a+b)米,因而面积为(m+n)(a+b)平方米.
另外,如图,这块地由四小块组成,它们的面积分别为ma平方米,mb平方米、na平方米,nb平方米,故这块地的面积为(ma+mb+na+nb)平方米.

由此可得(m+n)(a+b)=ma+mb+na+nb.今天我们就学习多项式乘以多项式.
二、合作探究
探究点一:多项式与多项式相乘
【类型一】 直接利用多项式乘多项式法则进行计算
计算:
(1)(3x+2)(x+2);
(2)(4y-1)(5-y).
解析:利用多项式乘以多项式法则计算,即可得到结果.
解:(1)原式=3x2+6x+2x+4=3x2+8x+4;
(2)原式=20y-4y2-5+y=-4y2+21y-5.
方法总结:多项式乘以多项式,按一定的顺序进行,必须做到不重不漏;多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.
【类型二】 多项式乘以多项式的混合运算
计算:(3a+1)(2a-3)-(6a-5)(a-4).
解析:根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可.
解:(3a+1)(2a-3)-(6a-5)(a-4)=6a2-9a+2a-3-6a2+24a+5a-20=22a-23.
方法总结:在计算时要注意混合运算的顺序和法则以及运算结果的符号.

探究点二:多项式与多项式相乘的化简求值及应用
【类型一】 多项式乘以多项式的化简求值
先化简,再求值:(a-2b)(a2+2ab+4b2)-a(a-5b)(a+3b),其中a=-1,b=1.
解析:先将式子利用整式乘法展开,合并同类项化简,再代入计算.
解:(a-2b)(a2+2ab+4b2)-a(a-5b)(a+3b)=a3-8b3-(a2-5ab)(a+3b)=a3-8b3-a3-3a2b+5a2b+15ab2=-8b3+2a2b+15ab2.当a=-1,b=1时,原式=-8+2-15=-21.
方法总结:化简求值是整式运算中常见的题型,一定要注意先化简,再求值,不能先代值,再计算.
【类型二】 多项式乘以多项式与方程的综合
解方程:(x-3)(x-2)=(x+9)(x+1)+4.
解析:方程两边利用多项式乘以多项式法则计算,移项、合并同类项,将x系数化为1,即可求出解.
解:去括号后得x2-5x+6=x2+10x+9+4,移项、合并同类项得-15x=7,解得x=-.
方法总结:解答本题就是利用多项式的乘法,将原方程转化为已学过的方程解答.
【类型三】 多项式乘以多项式的实际应用
千年古镇杨家滩的某小区的内坝是一块长为(3a+b)米,宽为(2a+b)米的长方形地块,物业部门计划将内坝进行绿化(如图阴影部分),中间部分将修建一仿古小景点(如图中间的正方形),则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.

解析:根据长方形的面积公式,可得内坝、景点的面积,根据面积的差,可得答案.
解:由题意,得(3a+b)(2a+b)-(a+b)2=6a2+5ab+b2-a2-2ab-b2=5a2+3ab(平方米).当a=3,b=2时,5a2+3ab=5×32+3×3×2=63(平方米),故绿化的面积是63平方米.
方法总结:掌握长方形的面积公式和多项式乘多项式法则是解题的关键.
【类型四】 根据多项式乘以多项式求待定系数的值
已知ax2+bx+1(a≠0)与3x-2的积不含x2项,也不含x项,求系数a、b的值.
解析:首先利用多项式乘法法则计算出(ax2+bx+1)(3x-2),再根据积不含x2项,也不含x项,可得含x2项和含x项的系数等于零,即可求出a与b的值.
解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵积不含x2项,也不含x项,∴-2a+3b=0,-2b+3=0,解得b=,a=,∴系数a、b的值分别是,.
方法总结:解决此类问题首先要利用多项式乘法法则计算出展开式,合并同类项后,再根据不含某一项,可得这一项系数等于零,再列出方程解答.
当堂练习
1.下列说法不正确的是(D)
A.两个单项式的积仍是单项式;
B.两个单项式的积的次数等于它们的次数之和;
C.单项式乘以多项式,积的项数与多项式项数相同;
D.多项式乘以多项式,合并同类项前,积的项数等于两个多项式的项数之和.
2.下列多项式相乘的结果是a2-a-6的是(B)
A.(a-2)(a+3);
B.(a+2)(a-3);
C.(a-6)(a+1);
D.(a+6)(a-1).
3.下列计算正确的是(C)
A.a3·(-a2)=a5;
B.(-ax2)3=-ax6;
C.3x3-x(3x2-x+1)=x2-x;
D.(x+1)(x-3)=x2+x-3.
4.若(x+m)(x+n)=x2-6x+5,则(A)
A.m,n同时为负;
B.m,n同时为正;
C.m,n异号;
D.m,n异号且绝对值小的为正.
5.要使(x-3)·M=x2+x+N成立,且M是一个多项式,N是一个整数,则(C)
A.M=x-4,N=12;
B.M=x-5,N=15;
C.M=x+4,N=-12;
D.M=x+5,N=-15.
6.计算:
(1)(3x+1)(x-2);
(2)(a2+3)(a-2)-a(a2-2a-2);
(3)(x-5)(x+2);
(4)(x+5)(x-2);
(5)(x-5)(x-2);
(6)(x+5)(x+2).
答案:
(1)3x2-5x-2;(2)5a-6;(3)x2-3x-10;
(4)x2+3x-10;(5)x2-7x+10;(6)x2+7x+10.
7.若(mx+y)(x-y)=2x2+nxy-y2,求m,n的值.
解:左边=mx2-mxy+xy-y2=mx2+(1-m)xy-y2
∴m=2,n=1-m ∴n=-1
8.对于任意自然数,试说明代数式n(n+7)-(n-3)(n-2)的值都能被6整除.
解:n(n+7)-(n-3)(n-2)=n2+7n-n2+5n-6=12n-6=6(2n-1).
因为n为自然数,
所以6(2n-1)一定是6的倍数.
三、板书设计
1.多项式与多项式的乘法法则:
多项式和多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.
2.多项式与多项式乘法的应用

教学反思
本节知识的综合性较强,要求学生熟练掌握前面所学的单项式与单项式相乘及单项式与多项式相乘的知识,同时为了让学生理解并掌握多项式与多项式相乘的法则,教学中一定要精讲精练,让学生从练习中再次体会法则的内容,为以后的学习奠定基础