中小学教育资源及组卷应用平台
突破2020中考数学压轴题大揭秘
专题02二次函数与等腰三角形综合问题
【类型综述】
数学因运动而充满活力,数学因变化而精彩纷呈,动态几何问题是近年来中考的热点问题,以运动的观点来探究几何图形的变化规律问题,动态问题的解答,一般要将动态问题转化为静态问题,抓住运动过程中的不变量,利用不变的关系和几何性质建立关于方程(组)、函数关系问题,将几何问题转化为代数问题。
在动态问题中,动点形成的等腰三角形问题是常见的一类题型,可以与旋转、平移、对称等几何变化相结合,也可以与一次函数、反比例函数、二次函数的图象相结合,从而产生数与形的完美结合.解决动点产生的等腰三角形问题的重点和难点在于应用分类讨论思想和数形结合思想进行准确的分类.
【方法揭秘】
我们先回顾两个画图问题:
1.已知线段AB=5厘米,以线段AB为腰的等腰三角形ABC有多少个?顶点C的轨迹是什么?
2.已知线段AB=6厘米,以线段AB为底边的等腰三角形ABC有多少个?顶点C的轨迹是什么?
已知腰长画等腰三角形用圆规画圆,圆上除了两个点以外,都是顶点C.
已知底边画等腰三角形,顶角的顶点在底边的垂直平分线上,垂足要除外.
在讨论等腰三角形的存在性问题时,一般都要先分类.
如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.
解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.
几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?
如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.
①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么;③如图3,如果CA=CB,那么.
代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.
如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.
图1 图2 图3
【典例分析】
例1 综合与探究
如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).
(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;
(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由;
(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.
思路点拨
(1)根据待定系数法求出抛物线解析式即可求出点B坐标,求出直线OD解析式即可解决点E坐标.
(2)抛物线上存在点F使得△FOE≌△FCE,此时点F纵坐标为﹣4,令y=﹣4即可解决问题.
(3))①如图1中,当OP=OQ时,△OPQ是等腰三角形,过点E作直线ME∥PB,交y轴于点M,交x轴于点H,求出点M、H的坐标即可解决问题.②如图2中,当QO=QP时,△POQ是等腰三角形,先证明CE∥PQ,根据平行线的性质列出方程即可解决问题.
满分解答
(1)∵抛物线y=ax2+bx﹣8经过点A(﹣2,0),D(6,﹣8),
∴,解得,
∴抛物线解析式为yx2﹣3x﹣8,
∵yx2﹣3x﹣8(x﹣3)2,
∴抛物线对称轴为直线x=3,
又∵抛物线与x轴交于点A、B两点,点A坐标(﹣2,0),
∴点B坐标(8,0).
设直线l的解析式为y=kx,
∵经过点D(6,﹣8),
∴6k=﹣8,
∴k,
∴直线l的解析式为yx,
∵点E为直线l与抛物线的交点,
∴点E的横坐标为3,纵坐标为3=﹣4,
∴点E坐标(3,﹣4).
(2)抛物线上存在点F使得△FOE≌△FCE,
此时点F纵坐标为﹣4,
∴x2﹣3x﹣8=﹣4,
∴x2﹣6x﹣8=0,
x=3,
∴点F坐标(3,﹣4)或(3,﹣4).
(3)①如图1
中,当OP=OQ时,△OPQ是等腰三角形.
∵点E坐标(3,﹣4),
∴OE5,过点E作直线ME∥PB,交y轴于点M,交x轴于点H.则,
∴OM=OE=5,
∴点M坐标(0,﹣5).
设直线ME的解析式为y=k1x﹣5,
∴3k1﹣5=﹣4,
∴k1,
∴直线ME解析式为yx﹣5,
令y=0,得x﹣5=0,解得x=15,
∴点H坐标(15,0),
∵MH∥PB,
∴,即,
∴m,
②如图2
中,当QO=QP时,△POQ是等腰三角形.
∵当x=0时,yx2﹣3x﹣8=﹣8,
∴点C坐标(0,﹣8),
∴CE5,
∴OE=CE,
∴∠1=∠2,
∵QO=QP,
∴∠1=∠3,
∴∠2=∠3,
∴CE∥PB,
设直线CE交x轴于N,解析式为y=k2x﹣8,
∴3k2﹣8=﹣4,
∴k2,
∴直线CE解析式为yx﹣8,
令y=0,得x﹣8=0,
∴x=6,
∴点N坐标(6,0),
∵CN∥PB,
∴,
∴,
∴m.
③OP=PQ时,显然不可能,理由,
∵D(6,﹣8),
∴∠1<∠BOD,
∵∠OQP=∠BOQ+∠ABP,
∴∠PQO>∠1,
∴OP≠PQ,
综上所述,当m或时,△OPQ是等腰三角形.
例2如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
图1
思路点拨
1.第(2)题是典型的“牛喝水”问题,点P在线段BC上时△PAC的周长最小.
2.第(3)题分三种情况列方程讨论等腰三角形的存在性.
满分解答
(1)因为抛物线与x轴交于A(-1,0)、B(3, 0)两点,设y=a(x+1)(x-3),
代入点C(0 ,3),得-3a=3.解得a=-1.
所以抛物线的函数关系式是y=-(x+1)(x-3)=-x2+2x+3.
(2)如图2,抛物线的对称轴是直线x=1.
当点P落在线段BC上时,PA+PC最小,△PAC的周长最小.
设抛物线的对称轴与x轴的交点为H.
由,BO=CO,得PH=BH=2.
所以点P的坐标为(1, 2).
(3)点M的坐标为(1, 1)、(1,)、(1,)或(1,0).
考点伸展
第(3)题的解题过程是这样的:
设点M的坐标为(1,m).
在△MAC中,AC2=10,MC2=1+(m-3)2,MA2=4+m2.
①如图3,当MA=MC时,MA2=MC2.解方程4+m2=1+(m-3)2,得m=1.
此时点M的坐标为(1, 1).
②如图4,当AM=AC时,AM2=AC2.解方程4+m2=10,得.
此时点M的坐标为(1,)或(1,).
③如图5,当CM=CA时,CM2=CA2.解方程1+(m-3)2=10,得m=0或6.
当M(1, 6)时,M、A、C三点共线,所以此时符合条件的点M的坐标为(1,0).
图3 图4 图5
例3 如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.
(1)求点B的坐标;
(2)求经过A、O、B的抛物线的解析式;
(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.
图1
思路点拨
1.用代数法探求等腰三角形分三步:先分类,按腰相等分三种情况;再根据两点间的距离公式列方程;然后解方程并检验.
2.本题中等腰三角形的角度特殊,三种情况的点P重合在一起.
满分解答
(1)如图2,过点B作BC⊥y轴,垂足为C.
在Rt△OBC中,∠BOC=30°,OB=4,所以BC=2,.
所以点B的坐标为.
(2)因为抛物线与x轴交于O、A(4, 0),设抛物线的解析式为y=ax(x-4),
代入点B,.解得.
所以抛物线的解析式为.
(3)抛物线的对称轴是直线x=2,设点P的坐标为(2, y).
①当OP=OB=4时,OP2=16.所以4+y2=16.解得.
当P在时,B、O、P三点共线(如图2).
②当BP=BO=4时,BP2=16.所以.解得.
③当PB=PO时,PB2=PO2.所以.解得.
综合①、②、③,点P的坐标为,如图2所示.
图2 图3
考点伸展
如图3,在本题中,设抛物线的顶点为D,那么△DOA与△OAB是两个相似的等腰三角形.
由,得抛物线的顶点为.
因此.所以∠DOA=30°,∠ODA=120°.
例4 如图1,已知一次函数y=-x+7与正比例函数 的图象交于点A,且与x轴交于点B.
(1)求点A和点B的坐标;
(2)过点A作AC⊥y轴于点C,过点B作直线l//y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.
①当t为何值时,以A、P、R为顶点的三角形的面积为8?
②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.
思路点拨
1.把图1复制若干个,在每一个图形中解决一个问题.
2.求△APR的面积等于8,按照点P的位置分两种情况讨论.事实上,P在CA上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.
3.讨论等腰三角形APQ,按照点P的位置分两种情况讨论,点P的每一种位置又要讨论三种情况.
满分解答
(1)解方程组 得 所以点A的坐标是(3,4).
令,得.所以点B的坐标是(7,0).
(2)①如图2,当P在OC上运动时,0≤t<4.由,得.整理,得.解得t=2或t=6(舍去).如图3,当P在CA上运动时,△APR的最大面积为6.
因此,当t=2时,以A、P、R为顶点的三角形的面积为8.
图2 图3 图4
②我们先讨论P在OC上运动时的情形,0≤t<4.
如图1,在△AOB中,∠B=45°,∠AOB>45°,OB=7,,所以OB>AB.因此∠OAB>∠AOB>∠B.
如图4,点P由O向C运动的过程中,OP=BR=RQ,所以PQ//x轴.
因此∠AQP=45°保持不变,∠PAQ越来越大,所以只存在∠APQ=∠AQP的情况.
此时点A在PQ的垂直平分线上,OR=2CA=6.所以BR=1,t=1.
我们再来讨论P在CA上运动时的情形,4≤t<7.
在△APQ中, 为定值,,.
如图5,当AP=AQ时,解方程,得.
如图6,当QP=QA时,点Q在PA的垂直平分线上,AP=2(OR-OP).解方程,得.
如7,当PA=PQ时,那么.因此.解方程,得.
综上所述,t=1或或5或时,△APQ是等腰三角形.
图5 图6 图7
考点伸展
当P在CA上,QP=QA时,也可以用来求解.
例5 如图1,在△ABC中,ACB=90°,∠BAC=60°,点E是∠BAC的平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.
(1)如图1,若点H是AC的中点,AC=,求AB、BD的长;
(2)如图1,求证:HF=EF.
(3)如图2,连接CF、CE,猜想:△CEF是否是等边三角形?若是,请证明;若不是,请说明理由.
图1 图2
思路点拨
1.把图形中所有30°的角都标注出来,便于寻找等角和等边.
2.中点F有哪些用处呢?联想到斜边上的中线和中位线就有思路构造辅助线了.
满分解答
(1)如图3,在Rt△ABC中,∠BAC=60°,AC=,所以AB=.
在Rt△ADH中,∠DAH=30°,AH=,所以DH=1,AD=2.
在Rt△ADB中,AD=2,AB=,由勾股定理,得BD=.
(2)如图4,由∠DAB=90°,∠BAC=60°,AE平分∠BAC,得∠DAE=60°,
∠DAH=30°.
在Rt△ADE中,AE=.在Rt△ADH中,DH=.所以AE=DH.
因为点F是Rt△ABD的斜边上的中线,所以FA=FD,∠FAD=∠FDA.
所以∠FAE=∠FDH.所以△FAE≌△FDH.所以EF=HF.
图3 图4 图5
(3)如图5,作FM⊥AB于M,联结CM.
由FM//DA,F是DB的中点,得M是AB的中点.
因此FM=,△ACM是等边三角形.
又因为AE=,所以FM=EA.
又因为CM=CA,∠CMF=∠CAE=30°,所以△CMF≌△CAE.
所以∠MCF=∠ACE,CF=CE.
所以∠ECF=∠ACM=60°.所以△CEF是等边三角形.
考点伸展
我们再看几个特殊位置时的效果图,看看有没有熟悉的感觉.
如图6,如图7,当点F落在BC边上时,点H与点C重合.
图6 图7
如图8,图9,点E落在BC边上.如图10,图11,等腰梯形ABEC.
图8 图9 图10 图11
例6如图1,已知Rt△ABC中,∠C=90°,AC=8,BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P、Q运动的时间为t秒.
(1)在运动过程中,求P、Q两点间距离的最大值;
(2)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式;
(3)P,Q两点在运动过程中,是否存在时间t,使得△PQC为等腰三角形.若存在,求出此时的t值,若不存在,请说明理由.(,结果保留一位小数)
图1
思路点拨
1.过点B作QP的平行线交AC于D,那么BD的长就是PQ的最大值.
2.线段PQ扫过的面积S要分两种情况讨论,点Q分别在AB、BC上.
3.等腰三角形PQC分三种情况讨论,先罗列三边长.
满分解答
(1)在Rt△ABC中,AC=8,BC=6,所以AB=10.
如图2,当点Q在AB上时,作BD//PQ交AC于点D,那么.
所以AD=5.所以CD=3.
如图3,当点Q在BC上时,.
又因为,所以.因此PQ//BD.所以PQ的最大值就是BD.
在Rt△BCD中,BC=6,CD=3,所以BD=.所以PQ的最大值是.
图2 图3 图4
(2)①如图2,当点Q在AB上时,0<t≤5,S△ABD=15.
由△AQP∽△ABD,得.所以S=S△AQP==.
②如图3,当点Q在BC上时,5<t≤8,S△ABC=24.
因为S△CQP===,
所以S=S△ABC-S△CQP=24-(t-8)2=-t2+16t-40.
(3)如图3,当点Q在BC上时,CQ=2CP,∠C=90°,所以△PQC不可能成为等腰三角形.
当点Q在AB上时,我们先用t表示△PQC的三边长:易知CP=8-t.
如图2,由QP//BD,得,即.所以.
如图4,作QH⊥AC于H.在Rt△AQH中,QH=AQ sin∠A=,AH=.
在Rt△CQH中,由勾股定理,得CQ==.
分三种情况讨论等腰三角形PQC:
(1)①当PC=PQ时,解方程,得≈3.4(如图5所示).
②当QC=QP时,.整理,得.
所以(11t-40)(t-8)=0.解得≈3.6(如图6所示),或t=8(舍去).
③当CP=CQ时,.整理,得.
解得=3.2(如图7所示),或t=0(舍去).
综上所述,当t的值约为3.4,3.6,或等于3.2时,△PQC是等腰三角形.
图5 图6 图7
考点伸展
第(1)题求P、Q两点间距离的最大值,可以用代数计算说理的方法:
①如图8,当点Q在AB上时,PQ===.
当Q与B重合时,PQ最大,此时t=5,PQ的最大值为.
②如图9,当点Q在BC上时,PQ===.
当Q与B重合时,PQ最大,此时t=5,PQ的最大值为.
综上所述,PQ的最大值为.
图8 图9
【变式训练】
1.如图1,抛物线y=ax2+bx﹣2与x轴交于点A(﹣1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).
(1)求该抛物线的解析式;
(2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;
(3)如图3,连结AC,将△AOC绕点O逆时针方向旋转,记旋转中的三角形为△A′OC′,在旋转过程中,直线OC′与直线BE交于点Q,若△BOQ为等腰三角形,请直接写出点Q的坐标.
【分析】(1)利用待定系数法即可解决问题;
(2)因为△ADE的面积为定值,所以△APD的面积最大时,四边形EAPD面积的最大,过点P作PG⊥x轴交AD于点G,当PG的值最大时,△APD的面积最大,构建二次函数利用二次函数的性质即可解决问题;
(3)分四种情形分别求解即可解决问题;
【解析】(1)∵A(﹣1,0),B(4,0)在抛物线y=ax2+bx﹣2上,
∴,
解得,
∴抛物线的解析式为yx2x﹣2.
(2)过点P作PG⊥x轴交AD于点G,
∵B(4,0),E(0,2),
∴直线BE的解析式为yx+2,
∵AD∥BE,设直线AD的解析式为yx+b,代入A(﹣1,0),可得b,
∴直线AD的解析式为yx,
设G(m,m),则P(m,m2m﹣2),
则PG=(m)﹣(m2m﹣2)(m﹣1)2+2,
∴当x=1时,PG的值最大,最大值为2,
由,解得或,
∴D(3,﹣2),
∴S△ADP最大值PG×|xD﹣xA|2×4=4,
S△ADB5×2=5,
∵AD∥BE,
∴S△ADE=S△ADB=5,
∴S四边形APDE最大=S△ADP最大+S△ADB=4+5=9.
(3)①如图3﹣1中,当OQ=OB时,作OT⊥BE于T.
∵OB=4,OE=2,
∴BE=2,OT,
∴BT=TQ,
∴BQ,
可得Q(,);
②如图3﹣2中,当BO=BQ1时,Q1(4,),
当OQ2=BQ2时,Q2(2,1),
当BO=BQ3时,Q3(4,),
综上所述,满足条件点点Q坐标为(,)或(4,)或(2,1)或(4,);
2.如图,已知两直线l1,l2分别经过点A(1,0),点B(﹣3,0),且两条直线相交于y轴的正半轴上的点C,当点C的坐标为(0,)时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与l1、l2、x轴分别交于点G、E、F,D为抛物线的顶点.
(1)求抛物线的函数解析式;
(2)试说明DG与DE的数量关系?并说明理由;
(3)若直线l2绕点C旋转时,与抛物线的另一个交点为M,当△MCG为等腰三角形时,请直接写出点M的坐标.
【分析】(1)设抛物线的函数解析式为y=ax2+bx+c.将点A、B、C的坐标代入,得到关于a、b、c的方程组,解方程求出a、b、c的值,进而得到抛物线的解析式;
(2)利用待定系数法分别求出直线l1、直线l2的解析式,再求出G、D、E的坐标,计算得出DG=DE;
(3)当△MCG为等腰三角形时,分三种情况:①GM=GC;②CM=CG;③MC=MG.
【解析】(1)设抛物线的函数解析式为y=ax2+bx+c.
∵点A(1,0),点B(﹣3,0),点C(0,)在抛物线上,
∴,解得,
∴抛物线的函数解析式为yx2x;
(2)DG=DE.理由如下:
设直线l1的解析式为y=k1x+b1,将A(1,0),C(0,)代入,解得yx;
设直线l2的解析式为y=k2x+b2,将B(﹣3,0),C(0,)代入,解得yx;
∵抛物线与x轴的交点为A(1,0),B(﹣3,0),
∴抛物线的对称轴为直线x=﹣1,
又∵点G、D、E均在对称轴上,
∴G(﹣1,2),D(﹣1,),E(﹣1,),
∴DG=2,DE,
∴DG=DE;
(3)若直线l2绕点C旋转时,与抛物线的另一个交点为M,当△MCG为等腰三角形时,分三种情况:
①以G为圆心,GC为半径画弧交抛物线于点M1、C,点M1与C关于抛物线的对称轴对称,则M1的坐标为(﹣2,);
②以C为圆心,GC为半径画弧交抛物线于点M2、M3,点M2与点A重合,点A、C、G在一条直线上,不能构成三角形,M3与M1重合;
③作线段GC的垂直平分线,交抛物线于点M4、M5,点M4与点D重合,点D的坐标为(﹣1,),M5与M1重合;
综上所述,满足条件的点M只有两个,其坐标分别为(﹣2,),(﹣1,).
3.如图1,已知二次函数y=ax2x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.
(1)请直接写出二次函数y=ax2x+c的表达式;
(2)判断△ABC的形状,并说明理由;
(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;
(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.
【分析】(1)根据待定系数法即可求得;
(2)根据抛物线的解析式求得B的坐标,然后根据勾股定理分别求得AB2=20,AC2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC是直角三角形.
(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一个点,即可求得点N的坐标;
(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,根据三角形相似对应边成比例求得MD(n+2),然后根据S△AMN=S△ABN﹣S△BMN
得出关于n的二次函数,根据函数解析式求得即可.
【解析】(1)∵二次函数y=ax2x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),
∴,
解得.
∴抛物线表达式:yx2x+4;
(2)△ABC是直角三角形.
令y=0,则x2x+4=0,
解得x1=8,x2=﹣2,
∴点B的坐标为(﹣2,0),
由已知可得,
在Rt△ABO中AB2=BO2+AO2=22+42=20,
在Rt△AOC中AC2=AO2+CO2=42+82=80,
又∵BC=OB+OC=2+8=10,
∴在△ABC中AB2+AC2=20+80=102=BC2
∴△ABC是直角三角形.
(3)∵A(0,4),C(8,0),
∴AC4,
①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),
②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)
③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),
综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).
(4)如图,
AB2,BC=8﹣(﹣2)=10,AC4,
∴AB2+AC2=BC2,
∴∠BAC=90°.
∴AC⊥AB.
∵AC∥MN,
∴MN⊥AB.
设点N的坐标为(n,0),则BN=n+2,
∵MN∥AC,
△BMN∽△BAC
∴,
∴,
BM,
MN,
AM=AB﹣BM=2
∵S△AMNAM?MN
(n﹣3)2+5,
当n=3时,△AMN面积最大是5,
∴N点坐标为(3,0).
∴当△AMN面积最大时,N点坐标为(3,0).
4.如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.
(1)求二次函数的表达式;
(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值;
(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在请说明理由.
【分析】(1)把已知点坐标代入函数解析式,得出方程组求解即可;
(2)根据函数解析式设出点D坐标,过点D作DG⊥x轴于G,交AE于点F,表示△ADE的面积,运用二次函数分析最值即可;
(3)设出点P坐标,分PA=PE,PA=AE,PE=AE三种情况讨论分析即可.
【解析】(1)∵二次函数y=ax2+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),
∴,
解得,,
所以二次函数的解析式为:y,
(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y,
过点D作DG⊥x轴于G,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图
设D(m,),则点F(m,),
∴DF(),
∴S△ADE=S△ADF+S△EDFDF×AGDF×EH
DF×(AG+EH)
4×DF
=2×()
,
∴当m时,△ADE的面积取得最大值为.
(3)y的对称轴为x=﹣1,
设P(﹣1,n),又E(0,﹣2),A(﹣4,0),
可求PA2=9+n2,PE2=1,AE2=16+4=20,
当PA2=PE2时,9+n2=1,
解得,n=1,此时P(﹣1,1);
当PA2=AE2时,9+n2=20,
解得,n,此时点P坐标为(﹣1,);
当PE2=AE2时,120,
解得,n=﹣2,此时点P坐标为:(﹣1,﹣2).
综上所述,
P点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2).
5.如图1,抛物线y1=ax2x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.
(1)求抛物线y2的解析式;
(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;
(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.
【分析】(1)应用待定系数法求解析式;
(2)设出点T坐标,表示△TAC三边,进行分类讨论;
(3)设出点P坐标,表示Q、R坐标及PQ、QR,根据以P,Q,R为顶点的三角形与△AMG全等,分类讨论对应边相等的可能性即可.
【解析】(1)由已知,c,
将B(1,0)代入,得:a0,
解得a,
抛物线解析式为y1,
∵抛物线y1平移后得到y2,且顶点为B(1,0),
∴y2(x﹣1)2,
即y2.
(2)存在,
如图1:
抛物线y2的对称轴l为x=1,设T(1,t),
已知A(﹣3,0),C(0,),
过点T作TE⊥y轴于E,则
TC2=TE2+CE2=12+()2=t2,
TA2=TB2+AB2=(1+3)2+t2=t2+16,
AC2,
当TC=AC时,t2
解得:t1,t2;
当TA=AC时,t2+16,无解;
当TA=TC时,t2t2+16,
解得t3;
当点T坐标分别为(1,),(1,),(1,)时,△TAC为等腰三角形.
(3)如图2:
设P(m,),则Q(m,)
∵Q、R关于x=1对称
∴R(2﹣m,),
①当点P在直线l左侧时,
PQ=1﹣m,QR=2﹣2m,
∵△PQR与△AMG全等,
∴当PQ=GM且QR=AM时,m=0,
∴P(0,),即点P、C重合.
∴R(2,),
由此求直线PR解析式为y,
当PQ=AM且QR=GM时,无解;
②当点P在直线l右侧时,
同理:PQ=m﹣1,QR=2m﹣2,
则P(2,),R(0,),
PQ解析式为:y;
∴PR解析式为:y或y
6.综合与探究
如图,抛物线yx﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE∥AC交x轴于点E,交BC于点F.
(1)求A,B,C三点的坐标;
(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;
(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.
【分析】(1)解方程x﹣4=0得A(﹣3,0),B(4,0),计算自变量为0时的二次函数值得C点坐标;
(2)利用勾股定理计算出AC=5,利用待定系数法可求得直线BC的解析式为y=x﹣4,则可设Q(m,m﹣4)(0<m<4),讨论:当CQ=CA时,则m2+(m﹣4+4)2=52,当AQ=AC时,(m+3)2+(m﹣4)2=52;当QA=QC时,(m+3)2+(m﹣4)2=m2+(m﹣4+4)2,然后分别解方程求出m即可得到对应的Q点坐标;
(3)过点F作FG⊥PQ于点G,如图,由△OBC为等腰直角三角形.可判断△FQG为等腰直角三角形,则FG=QGFQ,再证明△FGP~△AOC得到,则PGFQ,所以PQFQ,于是得到FQPQ,设P(m,m2m﹣4)(0<m<4),则Q(m,m﹣4),利用PQm2m得到FQ(m2m),然后利用二次函数的性质解决问题.
【解析】(1)当y=0,x﹣4=0,解得x1=﹣3,x2=4,
∴A(﹣3,0),B(4,0),
当x=0,yx﹣4=﹣4,
∴C(0,﹣4);
(2)AC5,
易得直线BC的解析式为y=x﹣4,
设Q(m,m﹣4)(0<m<4),
当CQ=CA时,m2+(m﹣4+4)2=52,解得m1,m2(舍去),此时Q点坐标为(,4);
当AQ=AC时,(m+3)2+(m﹣4)2=52,解得m1=1,m2=0(舍去),此时Q点坐标为(1,﹣3);
当QA=QC时,(m+3)2+(m﹣4)2=m2+(m﹣4+4)2,解得m(舍去),
综上所述,满足条件的Q点坐标为(,4)或(1,﹣3);
(3)解:过点F作FG⊥PQ于点G,如图,
则FG∥x轴.由B(4,0),C(0,﹣4)得△OBC为等腰直角三角形
∴∠OBC=∠QFG=45
∴△FQG为等腰直角三角形,
∴FG=QGFQ,
∵PE∥AC,PG∥CO,
∴∠FPG=∠ACO,
∵∠FGP=∠AOC=90°,
∴△FGP~△AOC.
∴,即,
∴PGFG?FQFQ,
∴PQ=PG+GQFQFQFQ,
∴FQPQ,
设P(m,m2m﹣4)(0<m<4),则Q(m,m﹣4),
∴PQ=m﹣4﹣(m2m﹣4)m2m,
∴FQ(m2m)(m﹣2)2
∵0,
∴QF有最大值.
∴当m=2时,QF有最大值.
7.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).
(1)求这个二次函数的表达式;
(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与线段BC交于点M,连接PC.
①求线段PM的最大值;
②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.
【分析】(1)根据待定系数法,可得答案;
(2)①根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;
②根据等腰三角形的定义,可得方程,根据解方程,可得答案.
【解析】(1)将A,B,C代入函数解析式,得
,
解得,
这个二次函数的表达式y=x2﹣2x﹣3;
(2)设BC的解析式为y=kx+b,
将B,C的坐标代入函数解析式,得
,
解得,
BC的解析式为y=x﹣3,
设M(n,n﹣3),P(n,n2﹣2n﹣3),
PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n)2,
当n时,PM最大;
②解法一:当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,
解得n1=n2=0(不符合题意,舍),n3=2,
n2﹣2n﹣3=﹣3,
P(2,﹣3).
当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,
解得n1=0(不符合题意,舍),n2=3,n3=3(不符合题意,舍),
n2﹣2n﹣3=2﹣4,
P(3,2﹣4).
综上所述:P(3,2﹣4)或(2,﹣3).
解法二:当PM=PC时,
∵BC:y=x﹣3
∴∠ABC=45°
∵PH⊥AB
∴∠BMH=∠CMP=45°
∴PM=PC时,△CPM为等腰直角三角形,CP∥x轴
设P(n,n2﹣2n﹣3),则CP=n
MP=﹣n2+3n
∴n=﹣n2+3n
解得n=0(舍去)或n=2,
∴P(2,﹣3)
当PM=CM时,设P(n,n2﹣2n﹣3),
则n2+3n
n2+3n
∵n>0
∴n=﹣n2+2n
解得n=3
∴P(3,2﹣4)
综上所述:P(3,2﹣4)或(2,﹣3).
8.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.
(1)求这个二次函数的表达式;
(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;
(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.
【分析】(1)根据待定系数法,可得函数解析式;
(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PE的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案;
(3)根据等腰三角形的定义,可得关于m的方程,根据解方程,可得答案.
【解析】(1)将A(1,0),B(3,0)代入函数解析式,得
,
解得,
这个二次函数的表达式是y=x2﹣4x+3;
(2)当x=0时,y=3,即点C(0,3),
设BC的表达式为y=kx+b,将点B(3,0)点C(0,3)代入函数解析式,得
,
解这个方程组,得
直线BC的解析是为y=﹣x+3,
过点P作PE∥y轴,
交直线BC于点E(t,﹣t+3),
PE=﹣t+3﹣(t﹣4t+3)=﹣t2+3t,
∴S△BCP=S△BPE+SCPE(﹣t2+3t)×3(t)2,
∵0,∴当t时,S△BCP最大
(3)M(m,﹣m+3),N(m,m2﹣4m+3)
MN=|m2﹣3m|,BM|m﹣3|,
当MN=BM时,①m2﹣3m(m﹣3),解得m,
②m2﹣3m(m﹣3),解得m
当BN=MN时,∠NBM=∠BMN=45°,
m2﹣4m+3=0,解得m=1或m=3(舍)
当BM=BN时,∠BMN=∠BNM=45°,
﹣(m2﹣4m+3)=﹣m+3,解得m=2或m=3(舍),
当△BMN是等腰三角形时,m的值为,,1,2.
9.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A、B(点A在点B的左侧),与y轴交于点C(0,﹣2),OB=4OA,tan∠BCO=2.
(1)求A、B两点的坐标;
(2)求抛物线的解析式;
(3)点M、N分别是线段BC、AB上的动点,点M从点B出发以每秒个单位的速度向点C运动,同时点N从点A出发以每秒2个单位的速度向点B运动,当点M、N中的一点到达终点时,两点同时停止运动.过点M作MP⊥x轴于点E,交抛物线于点P.设点M、点N的运动时间为t(s),当t为多少时,△PNE是等腰三角形?
【分析】(1)由C(0,﹣2)知OC=2,根据tan∠BCO2得OB=4,据此得出点B坐标,再由OB=4OA可得点A坐标;
(2)将点A、B坐标代入抛物线解析式求得a、b的值,从而得出答案;
(3)由题意知AN=2t、BMt,根据tan∠BME=tan∠BCO=2知,求得OE=OB﹣BE=4﹣t,从而得出PE(4﹣t)2(4﹣t)+2,再分点N在点E左侧和右侧两种情况,表示出NE的长,利用NE=PE列方程求解可得答案.
【解析】(1)∵C(0,﹣2),
∴OC=2,
由tan∠BCO2得OB=4,
则点B(4,0),
∵OB=4OA,
∴OA=1,
则A(﹣1,0);
(2)将点A(﹣1,0)、B(4,0)代入y=ax2+bx﹣2,
得:,
解得:,
∴抛物线解析式为yx2x﹣2;
(3)设点M、点N的运动时间为t(s),则AN=2t、BMt,
∵PE⊥x轴,
∴PE∥OC,
∴∠BME=∠BCO,
则tan∠BME=tan∠BCO,即2,
∴,即,
则BE=t,
∴OE=OB﹣BE=4﹣t,
∴PE=﹣[(4﹣t)2(4﹣t)﹣2](4﹣t)2(4﹣t)+2,
①点N在点E左侧时,即﹣1+2t<4﹣t,解得t,
此时NE=AO+OE﹣AN=1+4﹣t﹣2t=5﹣3t,
∵△PNE是等腰三角形,
∴PE=NE,
即(4﹣t)2(4﹣t)+2=5﹣3t,
整理,得:t2﹣11t+10=0,
解得:t=1或t=10(舍);
②当点N在点E右侧时,即﹣1+2t>4﹣t,解得t,
又t且t,
∴t,
此时NE=AN﹣AO=2t﹣1﹣(4﹣t)=3t﹣5,
由PE=NE得(4﹣t)2(4﹣t)+2=3t﹣5,
整理,得:t2+t﹣10=0,
解得:t0,舍去;或t4(舍);
综上,当t=1时,△PNE是等腰三角形.
10.已知抛物线yx2x的图象如图所示:
(1)将该抛物线向上平移2个单位,分别交x轴于A、B两点,交y轴于点C,则平移后的解析式为 yx2x+2 .
(2)判断△ABC的形状,并说明理由.
(3)在抛物线对称轴上是否存在一点P,使得以A、C、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.
【分析】(1)根据函数图象的平移规律,可得新的函数解析式;
(2)根据自变量与函数值的对应关系,可得A,B,C的坐标,根据勾股定理及逆定理,可得答案;
(3)根据等腰三角形的定义,可得关于n的方程,根据解方程,可得答案.
【解析】(1)将该抛物线向上平移2个单位,得yx2x+2,
故答案为:yx2x+2;
(2)当y=0时,x2x+2=0,解得x1=﹣4,x2=1,即B(﹣4,0),A(1,0).
当x=0时,y=2,即C(0,2).
AB=1﹣(﹣4)=5,AB2=25,
AC2=(1﹣0)2+(0﹣2)2=5,BC2=(﹣4﹣0)2+(0﹣2)2=20,
∵AC2+BC2=AB2,
∴△ABC是直角三角形;
(3)yx2x+2的对称轴是x,设P(,n),
AP2=(1)2+n2n2,CP2(2﹣n)2,AC2=12+22=5
当AP=AC时,AP2=AC2,n2=5,方程无解;
当AP=CP时,AP2=CP2,n2(2﹣n)2,解得n=0,即P1(,0),
当AC=CP时AC2=CP2,(2﹣n)2=5,解得n1=2,n2=2,P2(,2),P3(,2).
综上所述:使得以A、C、P为顶点的三角形是等腰三角形,点P的坐标(,0),(,2),(,2).
11.已知抛物线的顶点为(2,﹣4)并经过点(﹣2,4),点A在抛物线的对称轴上并且纵坐标为,抛物线交y轴于点N.如图1.
(1)求抛物线的解析式;
(2)点P为抛物线对称轴上的一点,△ANP为等腰三角形,求点P的坐标;
(3)如图2,点B为直线y=﹣2上的一个动点,过点B的直线l与AB垂直
①求证:直线l与抛物线总有两个交点;
②设直线1与抛物线交于点C、D(点C在左侧),分别过点C、D作直线y=﹣2的垂线,垂足分别为E、F.求EF的长.
【分析】(1)由题意设抛物线的解析式为y=a(x﹣2)2﹣4,把(﹣2,4)代入求出a即可解决问题;
(2)利用勾股定理求出AN的长,分三种情形分别求解即可解决问题;
(3)①设B(m,﹣2),则直线AB的解析式为yx,由直线l⊥AB,推出直线l的解析式为y=(2m﹣4)x﹣2m2+4m﹣2,由,消去y得到:∴x2+4(1﹣m)x+4(m2﹣2m)=0,只要证明△>0即可;
②设C(x1,y1),D(x2,y2),由①可知:EF=x2﹣x1,求出方程的两根即可解决问题;
【解答】(1)解:由题意设抛物线的解析式为y=a(x﹣2)2﹣4,把(﹣2,4)代入得到a,
∴抛物线的解析式为y(x﹣2)2﹣4,即yx2﹣2x﹣2.
(2)解:由题意:A(2,﹣1.5),N(0,﹣2).
∴AN,
当PA=AN时,可得P1(2,),P3(2,).
当NA=NP时,可得P2(2,),
当PN=PA时,设P4(2,a),则有(a)2=22+(a+2)2,
解得a,
∴P4(2,),
综上所述,满足条件的点OP坐标为P1(2,),P2(2,),P3(2,),P4(2,);
(3)①证明:如图2中,
设B(m,﹣2),则直线AB的解析式为yx,
∵直线l⊥AB,
∴直线l的解析式为y=(2m﹣4)x﹣2m2+4m﹣2,
由,消去y得到:∴x2+4(1﹣m)x+4(m2﹣2m)=0,
∴△=[4(1﹣m)]2﹣4?1?4(m2﹣2m)=16>0,
∴直线l与抛物线有两个交点.
②设C(x1,y1),D(x2,y2),
由①可知:EF=x2﹣x1,
∵x2+4(1﹣m)x+4(m2﹣2m)=0,
∴x,
∴x2,x1,
∴EF=x2﹣x1=4.
12.在平面直角坐标系中,已知抛物线y=x2+bx+c的顶点M的坐标为(﹣1,﹣4),且与x轴交于点A,点B(点A在点B的左边),与y轴交于点C.
(1)填空:b= 2 ,c= ﹣3 ,直线AC的解析式为 y=﹣x﹣3 ;
(2)直线x=t与x轴相交于点H.
①当t=﹣3时得到直线AN(如图1),点D为直线AC下方抛物线上一点,若∠COD=∠MAN,求出此时点D的坐标;
②当﹣3<t<﹣1时(如图2),直线x=t与线段AC,AM和抛物线分别相交于点E,F,P.试证明线段HE,EF,FP总能组成等腰三角形;如果此等腰三角形底角的余弦值为,求此时t的值.
【分析】(1)根据顶点坐标列出关于b、c的方程组求解可得,由抛物线解析式求得A、C坐标,利用待定系数法可得直线AC解析式;
(2)①设点D的坐标为(m,m2+2m﹣3),由∠COD=∠MAN得tan∠COD=tan∠MAN,列出关于m的方程求解可得;②求出直线AM的解析式,进而可用含t的式子表示出HE、EF、FP的长度,根据等腰三角形定义即可判定;由等腰三角形底角的余弦值为可得,列方程可求得t的值.
【解析】(1)∵抛物线y=x2+bx+c的顶点M的坐标为(﹣1,﹣4),
∴,解得:,
∴抛物线解析式为:y=x2+2x﹣3,
令y=0,得:x2+2x﹣3=0,解得:x1=1,x2=﹣3,
∴A(﹣3,0),B(1,0),
令x=0,得y=﹣3,
∴C(0,﹣3),
设直线AC的解析式为:y=kx+b,
将A(﹣3,0),C(0,﹣3)代入,
得:,解得:,
∴直线AC的解析式为:y=﹣x﹣3;
故答案为:2,﹣3,y=﹣x﹣3.
(2)①设点D的坐标为(m,m2+2m﹣3),
∵∠COD=∠MAN,
∴tan∠COD=tan∠MAN,
∴,
解得:m=±,
∵﹣3<m<0,
∴m,
故点D的坐标为(,﹣2);
②设直线AM的解析式为y=mx+n,
将点A(﹣3,0)、M(﹣1,﹣4)代入,
得:,解得:,
∴直线AM的解析式为:y=﹣2x﹣6,
∵当x=t时,HE=﹣(﹣t﹣3)=t+3,HF=﹣(﹣2t﹣6)=2t+6,HP=﹣(t2+2t﹣3),
∴HE=EF=HF﹣HE=t+3,FP=﹣t2﹣4t﹣3,
∵HE+EF﹣FP=2(t+3)+t2+4t+3=(t+3)2>0,
∴HE+EF>FP,
又HE+FP>EF,EF+FP>HE,
∴当﹣3<t<﹣1时,线段HE,EF,FP总能组成等腰三角形;
由题意得:,即,
整理得:5t2+26t+33=0,
解得:t1=﹣3,t2,
∵﹣3<t<﹣1,
∴t.
13.如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;
(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.
【分析】(1)由点B、C的坐标利用待定系数法即可求出抛物线的解析式;
(2)设出点M的坐标以及直线BC的解析式,由点B、C的坐标利用待定系数法即可求出直线BC的解析式,结合点M的坐标即可得出点N的坐标,由此即可得出线段MN的长度关于m的函数关系式,再结合点M在x轴下方可找出m的取值范围,利用二次函数的性质即可解决最值问题;
(3)假设存在,设出点P的坐标为(2,n),结合(2)的结论可求出点N的坐标,结合点N、B的坐标利用两点间的距离公式求出线段PN、PB、BN的长度,根据等腰三角形的性质分类讨论即可求出n值,从而得出点P的坐标.
【解析】(1)将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中,
得:,解得:,
∴抛物线的解析式为y=x2﹣4x+3.
(2)设点M的坐标为(m,m2﹣4m+3),设直线BC的解析式为y=kx+3,
把点点B(3,0)代入y=kx+3中,
得:0=3k+3,解得:k=﹣1,
∴直线BC的解析式为y=﹣x+3.
∵MN∥y轴,
∴点N的坐标为(m,﹣m+3).
∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,
∴抛物线的对称轴为x=2,
∴点(1,0)在抛物线的图象上,
∴1<m<3.
∵线段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m,
∴当m时,线段MN取最大值,最大值为.
(3)假设存在.设点P的坐标为(2,n).
当m时,点N的坐标为(,),
∴PB,PN,BN.
△PBN为等腰三角形分三种情况:
①当PB=PN时,即,
解得:n,
此时点P的坐标为(2,);
②当PB=BN时,即,
解得:n=±,
此时点P的坐标为(2,)或(2,);
③当PN=BN时,即,
解得:n,
此时点P的坐标为(2,)或(2,).
综上可知:在抛物线的对称轴l上存在点P,使△PBN是等腰三角形,点P的坐标为(2,)、(2,)、(2,)、(2,)或(2,).
14.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线yx+1与y轴交于点D.
(1)求抛物线的解析式;
(2)证明:△DBO∽△EBC;
(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.
【分析】(1)先求出点C的坐标,在由BO=OC=3AO,确定出点B,A的坐标,最后用待定系数法求出抛物线解析式;
(2)先求出点A,B,C,D,E的坐标,从而求出BC=3,BE=2,CE,OD=1,OB=3,BD,求出比值,得到得出结论;
(3)设出点P的坐标,表示出PB,PC,求出BC,分三种情况计算即可.
【解析】(1)∵抛物线y=ax2+bx﹣3,
∴c=﹣3,
∴C(0,﹣3),
∴OC=3,
∵BO=OC=3AO,
∴BO=3,AO=1,
∴B(3,0),A(﹣1,0),
∵该抛物线与x轴交于A、B两点,
∴,
∴,
∴抛物线解析式为y=x2﹣2x﹣3,
(2)由(1)知,抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴E(1,﹣4),
∵B(3,0),A(﹣1,0),C(0,﹣3),
∴BC=3,BE=2,CE,
∵直线yx+1与y轴交于点D,
∴D(0,1),
∵B(3,0),
∴OD=1,OB=3,BD,
∴,,,
∴,
∴△BCE∽△BDO,
(3)存在,
理由:设P(1,m),
∵B(3,0),C(0,﹣3),
∴BC=3,PB,PC,
∵△PBC是等腰三角形,
①当PB=PC时,
∴,
∴m=﹣1,
∴P(1,﹣1),
②当PB=BC时,
∴3,
∴m=±,
∴P(1,)或P(1,),
③当PC=BC时,
∴3,
∴m=﹣3±,
∴P(1,﹣3)或P(1,﹣3),
∴符合条件的P点坐标为P(1,﹣1)或P(1,)或P(1,)或P(1,﹣3)或P(1,﹣3)
15.如图1,抛物线y=ax2﹣6x+c与x轴交于点A(﹣5,0)、B(﹣1,0),与y轴交于点C(0,﹣5),点P是抛物线上的动点,连接PA、PC,PC与x轴交于点D.
(1)求该抛物线所对应的函数解析式;
(2)若点P的坐标为(﹣2,3),请求出此时△APC的面积;
(3)过点P作y轴的平行线交x轴于点H,交直线AC于点E,如图2.
①若∠APE=∠CPE,求证:;
②△APE能否为等腰三角形?若能,请求出此时点P的坐标;若不能,请说明理由.
【分析】(1)设交点式为y=a(x+5)(x+1),然后把C点坐标代入求出a即可;
(2)先利用待定系数法求出直线AC的解析式为y=﹣x﹣5,作PQ∥y轴交AC于Q,如图1,由P点坐标得到Q(﹣2,﹣3),则PQ=6,然后根据三角形面积公式,利用S△APC=S△APQ+S△CPQ进行计算;
(3)①由∠APE=∠CPE,PH⊥AD可判断△PAD为等腰三角形,则AH=DH,设P(x,﹣x2﹣6x﹣5),则OH=﹣x,OD=﹣x﹣DH,通过证明△PHD∽△COD,利用相似比可表示出DH=﹣x,则﹣x﹣x5,则解方程求出x可得到OH和AH的长,然后利用平行线分线段成比例定理计算出;
②设P(x,﹣x2﹣6x﹣5),则E(x,﹣x﹣5),分类讨论:当PA=PE,易得点P与B点重合,此时P点坐标为(﹣1,0);当AP=AE,如图2,利用PH=HE得到|﹣x2﹣6x﹣5|=|﹣x﹣5|,当E′A=E′P,如图2,AE′E′H′(x+5),P′E′=x2+5x,则|x2+5x|(x+5),然后分别解方程求出x可得到对应P点坐标.
【解答】(1)解:设抛物线解析式为y=a(x+5)(x+1),
把C(0,﹣5)代入得a?5?1=﹣5,解得a=﹣1,
所以抛物线解析式为y=﹣(x+5)(x+1),即y=﹣x2﹣6x﹣5;
(2)解:设直线AC的解析式为y=mx+n,
把A(﹣5,0),C(0,﹣5)代入得,解得,
∴直线AC的解析式为y=﹣x﹣5,
作PQ∥y轴交AC于Q,如图1,则Q(﹣2,﹣3),
∴PQ=3﹣(﹣3)=6,
∴S△APC=S△APQ+S△CPQ?PQ?56×5=15;
(3)①证明:∵∠APE=∠CPE,
而PH⊥AD,
∴△PAD为等腰三角形,
∴AH=DH,
设P(x,﹣x2﹣6x﹣5),则OH=﹣x,OD=﹣x﹣DH,
∵PH∥OC,
∴△PHD∽△COD,
∴PH:OC=DH:OD,即(﹣x2﹣6x﹣5):5=DH:(﹣x﹣DH),
∴DH=﹣x,
而OH+AH=5,即OH+DH=5,
∴﹣x﹣x5,
整理得2x2+17x+35=0,解得x1,x2=﹣5(舍去),
∴OH,
∴AH=5,
∵HE∥OC,
∴;
②能.设P(x,﹣x2﹣6x﹣5),则E(x,﹣x﹣5),
当PA=PE,因为∠PEA=45°,所以∠PAE=45°,则点P与B点重合,此时P点坐标为(﹣1,0);
当AP=AE,如图2,则PH=HE,即|﹣x2﹣6x﹣5|=|﹣x﹣5|,解﹣x2﹣6x﹣5=﹣x﹣5得x1=﹣5(舍去),x2=0(舍去);解﹣x2﹣6x﹣5=x+5得x1=﹣5(舍去),x2=﹣2,此时P点坐标为(﹣2,3);
当E′A=E′P,如图2,AE′E′H′(x+5),P′E′=|﹣x﹣5﹣(﹣x2﹣6x﹣5)|=|x2+5x|,若x2+5x(x+5),解得x1=﹣5(舍去),x2,此时P点坐标为(,﹣7﹣6);若x2+5x(x+5),解得x1=﹣5(舍去),x2,此时P点坐标为(,67).
综上所述,满足条件的P点坐标为(﹣1,0),(﹣2,3),(,﹣7﹣6),(,67).
16.如图,二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于点C,且B(1,0),C(0,3),将△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.
(1)求该二次函数的解析式;
(2)若点P为线段AB上的任一动点,过点P作PE∥AC,交BC于点E,连结CP,求△PCE面积S的最大值;
(3)设抛物线的顶点为M,Q为它的图象上的任一动点,若△OMQ为以OM为底的等腰三角形,求Q点的坐标.
【分析】(1)先求出点A坐标,再用待定系数法求出抛物线解析式;
(2)先求出S△PCE=S△PBC﹣S△PBE(x+1)2,即可求出最大面积;
(3)先求出抛物线顶点坐标,由等腰三角形的两腰相等建立方程求出点Q坐标.
【解析】(1)∵B(1,0),C(0,3),
∴OB=1,OC=3.
∵△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.
∴OA=OC=3,
∴A(﹣3,0),
∵点A,B,C在抛物线上,
∴
∴,
∴二次函数的解析式为y=﹣x2﹣2x+3,
(2)设点P(x,0),则PB=1﹣x,
∵A(﹣3,0),B(1,0),
∴AB=4,
∵C(0,3),
∴OC=3,
∴S△ABCAB×OC=6,
∵PE∥AC,
∴△BPE∽△BAC,
∴,
∴S△PBE=()2×S△ABC=()2×6(1﹣x)2,
∴S△PCE=S△PBC﹣S△PBEPB×OC(1﹣x)2(1﹣x)×3(1﹣x)2(x+1)2,
当x=﹣1时,S△PCE的最大值为.
(3)∵二次函数的解析式为y=﹣x2﹣2x+3=﹣(x+1)2+4,
∴顶点坐标(﹣1,4),
∵△OMQ为等腰三角形,OM为底,
∴MQ=OQ,
∴,
∴8x2+18x﹣7=0,
∴x,
∴y或y,
∴Q(,),或(,).
17.如图,已知抛物线yx2x+2与x轴交于A、B两点,与y轴交于点C
(1)求点A,B,C的坐标;
(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;
(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
【分析】(1)分别令y=0,x=0,即可解决问题.
(2)由图象可知AB只能为平行四边形的边,分E点为抛物线上的普通点和顶点2种情况讨论,即可求出平行四边形的面积.
(3)分A、C、M为顶点三种情形讨论,分别求解即可解决问题.
【解析】(1)令y=0得x2x+2=0,
∴x2+2x﹣8=0,
x=﹣4或2,
∴点A坐标(2,0),点B坐标(﹣4,0),
令x=0,得y=2,∴点C坐标(0,2).
(2)由图象①AB为平行四边形的边时,
∵AB=EF=6,对称轴x=﹣1,
∴点E的横坐标为﹣7或5,
∴点E坐标(﹣7,)或(5,),此时点F(﹣1,),
∴以A,B,E,F为顶点的平行四边形的面积=6.
②当点E在抛物线顶点时,点E(﹣1,),设对称轴与x轴交点为M,令EM与FM相等,则四边形AEBF是菱形,此时以A,B,E,F为顶点的平行四边形的面积6.
(3)如图所示,①当C为等腰三角形的顶角的顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,
在RT△CM1N中,CN,
∴点M1坐标(﹣1,2),点M2坐标(﹣1,2).
②当M3为等腰三角形的顶角的顶点时,∵直线AC解析式为y=﹣x+2,
∴线段AC的垂直平分线为y=x与对称轴的交点为M3(﹣1.﹣1),
∴点M3坐标为(﹣1,﹣1).
③当点A为等腰三角形的顶角的顶点的三角形不存在.
综上所述点M坐标为(﹣1,﹣1)或(﹣1,2)或(﹣1,2).
18.如图,抛物线y=ax2+2x﹣3与x轴交于A、B两点,且B(1,0)
(1)求抛物线的解析式和点A的坐标;
(2)如图1,点P是直线y=x上的动点,当直线y=x平分∠APB时,求点P的坐标;
(3)如图2,已知直线yx分别与x轴、y轴交于C、F两点,点Q是直线CF下方的抛物线上的一个动点,过点Q作y轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE.问:以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.
【分析】(1)把B点坐标代入抛物线解析式可求得a的值,可求得抛物线解析式,再令y=0,可解得相应方程的根,可求得A点坐标;
(2)当点P在x轴上方时,连接AP交y轴于点B′,可证△OBP≌△OB′P,可求得B′坐标,利用待定系数法可求得直线AP的解析式,联立直线y=x,可求得P点坐标;当点P在x轴下方时,同理可求得∠BPO=∠B′PO,又∠B′PO在∠APO的内部,可知此时没有满足条件的点P;
(3)过Q作QH⊥DE于点H,由直线CF的解析式可求得点C、F的坐标,结合条件可求得tan∠QDH,可分别用DQ表示出QH和DH的长,分DQ=DE和DQ=QE两种情况,分别用DQ的长表示出△QDE的面积,再设出点Q的坐标,利用二次函数的性质可求得△QDE的面积的最大值.
【解析】
(1)把B(1,0)代入y=ax2+2x﹣3,
可得a+2﹣3=0,解得a=1,
∴抛物线解析式为y=x2+2x﹣3,
令y=0,可得x2+2x﹣3=0,解得x=1或x=﹣3,
∴A点坐标为(﹣3,0);
(2)若y=x平分∠APB,则∠APO=∠BPO,
如图1,若P点在x轴上方,PA与y轴交于点B′,
由于点P在直线y=x上,可知∠POB=∠POB′=45°,
在△BPO和△B′PO中
,
∴△BPO≌△B′PO(ASA),
∴BO=B′O=1,
设直线AP解析式为y=kx+b,把A、B′两点坐标代入可得
,解得,
∴直线AP解析式为yx+1,
联立,解得,
∴P点坐标为(,);
若P点在x轴下方时,同理可得△BOP≌△B′OP,
∴∠BPO=∠B′PO,
又∠B′PO在∠APO的内部,
∴∠APO≠∠BPO,即此时没有满足条件的P点,
综上可知P点坐标为(,);
(3)如图2,作QH⊥CF,交CF于点H,
∵CF为yx,
∴可求得C(,0),F(0,),
∴tan∠OFC,
∵DQ∥y轴,
∴∠QDH=∠MFD=∠OFC,
∴tan∠HDQ,
不妨设DQ=t,DHt,HQt,
∵△QDE是以DQ为腰的等腰三角形,
∴若DQ=DE,则S△DEQDE?HQt×tt2,
若DQ=QE,则S△DEQDE?HQ2DH?HQttt2,
∵t2t2,
∴当DQ=QE时△DEQ的面积比DQ=DE时大.
设Q点坐标为(x,x2+2x﹣3),则D(x,x),
∵Q点在直线CF的下方,
∴DQ=tx(x2+2x﹣3)=﹣x2x,
当x时,tmax=3,
∴(S△DEQ)maxt2,
即以QD为腰的等腰三角形的面积最大值为.
19.如图,在平面直角坐标系中,抛物线yx2x与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.
(1)求直线AE的解析式;
(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;
(3)点G是线段CE的中点,将抛物线yx2x沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
【分析】(1)抛物线的解析式可变形为y(x+1)(x﹣3),从而可得到点A和点B的坐标,然后再求得点E的坐标,设直线AE的解析式为y=kx+b,将点A和点E的坐标代入求得k和b的值,从而得到AE的解析式;
(2)设直线CE的解析式为y=mx,将点E的坐标代入求得m的值,从而得到直线CE的解析式,过点P作PF∥y轴,交CE与点F.设点P的坐标为(x,x2x),则点F(x,x),则FPx2x.由三角形的面积公式得到△EPC的面积x2x,利用二次函数的性质可求得x的值,从而得到点P的坐标,作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M.然后利用轴对称的性质可得到点G和点H的坐标,当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH;
(3)由平移后的抛物线经过点D,可得到点F的坐标,利用中点坐标公式可求得点G的坐标,然后分为QG=FG、QG=QF,FQ=FQ三种情况求解即可.
【解析】(1)∵yx2x,
∴y(x+1)(x﹣3).
∴A(﹣1,0),B(3,0).
当x=4时,y.
∴E(4,).
设直线AE的解析式为y=kx+b,将点A和点E的坐标代入得:,
解得:k,b.
∴直线AE的解析式为yx.
(2)设直线CE的解析式为y=mx,将点E的坐标代入得:4m,解得:m.
∴直线CE的解析式为yx.
过点P作PF∥y轴,交CE与点F.
设点P的坐标为(x,x2x),则点F(x,x),
则FP=(x)﹣(x2x)x2x.
∴△EPC的面积(x2x)×4x2x.
∴当x=2时,△EPC的面积最大.
∴P(2,).
如图2所示:作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M.
∵K是CB的中点,
∴k(,).
∴tan∠KCP.
∵OD=1,OC,
∴tan∠OCD.
∴∠OCD=∠KCP=30°.
∴∠KCD=30°.
∵k是BC的中点,∠OCB=60°,
∴OC=CK.
∴点O与点K关于CD对称.
∴点G与点O重合.
∴点G(0,0).
∵点H与点K关于CP对称,
∴点H的坐标为(,).
∴KM+MN+NK=MH+MN+GN.
当点O、N、M、H在条直线上时,KM+MN+NK有最小值,最小值=GH.
∴GH3.
∴KM+MN+NK的最小值为3.
(3)如图3所示:
∵y′经过点D,y′的顶点为点F,
∴点F(3,).
∵点G为CE的中点,
∴G(2,).
∴FG.
∴当FG=FQ时,点Q(3,),Q′(3,).
当GF=GQ时,点F与点Q″关于y对称,
∴点Q″(3,2).
当QG=QF时,设点Q1的坐标为(3,a).
由两点间的距离公式可知:a,解得:a.
∴点Q1的坐标为(3,).
综上所述,点Q的坐标为(3,)或′(3,)或(3,2)或(3,).
20.如图,在平面直角坐标系xOy,已知二次函数yx2+bx的图象过点A(4,0),顶点为B,连接AB、BO.
(1)求二次函数的表达式;
(2)若C是BO的中点,点Q在线段AB上,设点B关于直线CQ的对称点为B',当△OCB'为等边三角形时,求BQ的长度;
(3)若点D在线段BO上,OD=2DB,点E、F在△OAB的边上,且满足△DOF与△DEF全等,求点E的坐标.
【分析】(1)利用待定系数法求二次函数的表达式;
(2)先求出OB和AB的长,根据勾股定理的逆定理证明∠ABO=90°,由对称计算∠QCB=60°,利用特殊的三角函数列式可得BQ的长;
(3)因为D在OB上,所以F分两种情况:
i)当F在边OA上时,ii)当点F在AB上时,
当F在边OA上时,分三种情况:
①如图2,过D作DF⊥x轴,垂足为F,则E、F在OA上,②如图3,作辅助线,构建△OFD≌△EDF≌△FGE,③如图4,将△DOF沿边DF翻折,使得O恰好落在AB边上,记为点E,当点F在OB上时,过D作DF∥x轴,交AB于F,连接OF与DA,依次求出点E的坐标即可.
ii)当点F在AB上时,分两种情况:画出图形可得结论.
【解析】(1)将点A的坐标代入二次函数的解析式得:42+4b=0,解得b=2,
∴二次函数的表达式为yx2+2x.
(2)∵yx2+2x(x﹣2)2+2,
∴B(2,2),抛物线的对称轴为x=2.
如图1所示:
由两点间的距离公式得:OB2,BA2.
∵C是OB的中点,
∴OC=BC.
∵△OB′C为等边三角形,
∴∠OCB′=60°.
又∵点B与点B′关于CQ对称,
∴∠B′CQ=∠BCQ=60°.
∵OA=4,OB=2,AB=2,
∴OB2+AB2=OA2
∴∠OBA=90°.
在Rt△CBQ中,∠CBQ=90°,∠BCQ=60°,BC,
∴tan60°,
∴BQCB.
(3)分两种情况:
i)当F在边OA上时,
①如图2,过D作DF⊥x轴,垂足为F,
∵△DOF≌△DEF,且E在线段OA上,
∴OF=FE,
由(2)得:OB=2,
∵点D在线段BO上,OD=2DB,
∴ODOB,
∵∠BOA=45°,
∴cos45°,
∴OF=OD?cos45°,
则OE=2OF,
∴点E的坐标为(,0);
②如图3,过D作DF⊥x轴于F,过D作DE∥x轴,交AB于E,连接EF,过E作EG⊥x轴于G,
∴△BDE∽△BOA,
∴,
∵OA=4,
∴DE,
∵DE∥OA,
∴∠OFD=∠FDE=90°,
∵DE=OF,DF=DF,
∴△OFD≌△EDF,
同理可得:△EDF≌△FGE,
∴△OFD≌△EDF≌△FGE,
∴OG=OF+FG=OF+DE,EG=DF=OD?sin45°,
∴E的坐标为(,);
③如图4,将△DOF沿边DF翻折,使得O恰好落在AB边上,记为点E,
过B作BM⊥x轴于M,过E作EN⊥BM于N,
由翻折的性质得:△DOF≌△DEF,
∴OD=DE,
∵BDOD,
∴在Rt△DBE中,由勾股定理得:BE,
则BN=NE=BE?cos45°,
OM+NE=2,BM﹣BN=2,
∴点E的坐标为:(2,2);
ii)当点F在AB上时,
①过D作DF∥x轴,交AB于F,连接OF与DA,
∵DF∥x轴,
∴△BDF∽△BOA,
∴,
由抛物线的对称性得:OB=BA,
∴BD=BF,
则∠BDF=∠BFD,∠ODF=∠AFD,
∴OD=OB﹣BD=BA﹣BF=AF,
则△DOF≌△DAF,
∴E和A重合,则点E的坐标为(4,0);
②如图6,由①可知:当E与O重合时,△DOF与△DEF重合,
此时点E(0,0);
综上所述,点E的坐标为:(,0)或(,)或(2,2)或(4,0)或(0,0).
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
中小学教育资源及组卷应用平台
突破2020中考数学压轴题大揭秘
专题02二次函数与等腰三角形综合问题
【类型综述】
数学因运动而充满活力,数学因变化而精彩纷呈,动态几何问题是近年来中考的热点问题,以运动的观点来探究几何图形的变化规律问题,动态问题的解答,一般要将动态问题转化为静态问题,抓住运动过程中的不变量,利用不变的关系和几何性质建立关于方程(组)、函数关系问题,将几何问题转化为代数问题。
在动态问题中,动点形成的等腰三角形问题是常见的一类题型,可以与旋转、平移、对称等几何变化相结合,也可以与一次函数、反比例函数、二次函数的图象相结合,从而产生数与形的完美结合.解决动点产生的等腰三角形问题的重点和难点在于应用分类讨论思想和数形结合思想进行准确的分类.
【方法揭秘】
我们先回顾两个画图问题:
1.已知线段AB=5厘米,以线段AB为腰的等腰三角形ABC有多少个?顶点C的轨迹是什么?
2.已知线段AB=6厘米,以线段AB为底边的等腰三角形ABC有多少个?顶点C的轨迹是什么?
已知腰长画等腰三角形用圆规画圆,圆上除了两个点以外,都是顶点C.
已知底边画等腰三角形,顶角的顶点在底边的垂直平分线上,垂足要除外.
在讨论等腰三角形的存在性问题时,一般都要先分类.
如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.
解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.
几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?
如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.
①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么;③如图3,如果CA=CB,那么.
代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.
如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.
图1 图2 图3
【典例分析】
例1 综合与探究
如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).
(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;
(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F的坐标;若不存在,请说明理由;
(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.
例2如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
图1
例3 如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.
(1)求点B的坐标;
(2)求经过A、O、B的抛物线的解析式;
(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.
图1
例4 如图1,已知一次函数y=-x+7与正比例函数 的图象交于点A,且与x轴交于点B.
(1)求点A和点B的坐标;
(2)过点A作AC⊥y轴于点C,过点B作直线l//y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.
①当t为何值时,以A、P、R为顶点的三角形的面积为8?
②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.
例5 如图1,在△ABC中,ACB=90°,∠BAC=60°,点E是∠BAC的平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.
(1)如图1,若点H是AC的中点,AC=,求AB、BD的长;
(2)如图1,求证:HF=EF.
(3)如图2,连接CF、CE,猜想:△CEF是否是等边三角形?若是,请证明;若不是,请说明理由.
图1 图2
例6如图1,已知Rt△ABC中,∠C=90°,AC=8,BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P、Q运动的时间为t秒.
(1)在运动过程中,求P、Q两点间距离的最大值;
(2)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式;
(3)P,Q两点在运动过程中,是否存在时间t,使得△PQC为等腰三角形.若存在,求出此时的t值,若不存在,请说明理由.(,结果保留一位小数)
图1
【变式训练】
1.如图1,抛物线y=ax2+bx﹣2与x轴交于点A(﹣1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).
(1)求该抛物线的解析式;
(2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;
(3)如图3,连结AC,将△AOC绕点O逆时针方向旋转,记旋转中的三角形为△A′OC′,在旋转过程中,直线OC′与直线BE交于点Q,若△BOQ为等腰三角形,请直接写出点Q的坐标.
2.如图,已知两直线l1,l2分别经过点A(1,0),点B(﹣3,0),且两条直线相交于y轴的正半轴上的点C,当点C的坐标为(0,)时,恰好有l1⊥l2,经过点A、B、C的抛物线的对称轴与l1、l2、x轴分别交于点G、E、F,D为抛物线的顶点.
(1)求抛物线的函数解析式;
(2)试说明DG与DE的数量关系?并说明理由;
(3)若直线l2绕点C旋转时,与抛物线的另一个交点为M,当△MCG为等腰三角形时,请直接写出点M的坐标.
3.如图1,已知二次函数y=ax2x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.
(1)请直接写出二次函数y=ax2x+c的表达式;
(2)判断△ABC的形状,并说明理由;
(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;
(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.
4.如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.
(1)求二次函数的表达式;
(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值;
(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在请说明理由.
5.如图1,抛物线y1=ax2x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.
(1)求抛物线y2的解析式;
(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;
(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.
6.综合与探究
如图,抛物线yx﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE∥AC交x轴于点E,交BC于点F.
(1)求A,B,C三点的坐标;
(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;
(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.
7.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).
(1)求这个二次函数的表达式;
(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与线段BC交于点M,连接PC.
①求线段PM的最大值;
②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.
8.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.
(1)求这个二次函数的表达式;
(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;
(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.
9.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A、B(点A在点B的左侧),与y轴交于点C(0,﹣2),OB=4OA,tan∠BCO=2.
(1)求A、B两点的坐标;
(2)求抛物线的解析式;
(3)点M、N分别是线段BC、AB上的动点,点M从点B出发以每秒个单位的速度向点C运动,同时点N从点A出发以每秒2个单位的速度向点B运动,当点M、N中的一点到达终点时,两点同时停止运动.过点M作MP⊥x轴于点E,交抛物线于点P.设点M、点N的运动时间为t(s),当t为多少时,△PNE是等腰三角形?
10.已知抛物线yx2x的图象如图所示:
(1)将该抛物线向上平移2个单位,分别交x轴于A、B两点,交y轴于点C,则平移后的解析式为 .
(2)判断△ABC的形状,并说明理由.
(3)在抛物线对称轴上是否存在一点P,使得以A、C、P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.
11.已知抛物线的顶点为(2,﹣4)并经过点(﹣2,4),点A在抛物线的对称轴上并且纵坐标为,抛物线交y轴于点N.如图1.
(1)求抛物线的解析式;
(2)点P为抛物线对称轴上的一点,△ANP为等腰三角形,求点P的坐标;
(3)如图2,点B为直线y=﹣2上的一个动点,过点B的直线l与AB垂直
①求证:直线l与抛物线总有两个交点;
②设直线1与抛物线交于点C、D(点C在左侧),分别过点C、D作直线y=﹣2的垂线,垂足分别为E、F.求EF的长.
12.在平面直角坐标系中,已知抛物线y=x2+bx+c的顶点M的坐标为(﹣1,﹣4),且与x轴交于点A,点B(点A在点B的左边),与y轴交于点C.
(1)填空:b= ,c= ,直线AC的解析式为 ;
(2)直线x=t与x轴相交于点H.
①当t=﹣3时得到直线AN(如图1),点D为直线AC下方抛物线上一点,若∠COD=∠MAN,求出此时点D的坐标;
②当﹣3<t<﹣1时(如图2),直线x=t与线段AC,AM和抛物线分别相交于点E,F,P.试证明线段HE,EF,FP总能组成等腰三角形;如果此等腰三角形底角的余弦值为,求此时t的值.
13.如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).
(1)求抛物线的解析式;
(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;
(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.
14.如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线yx+1与y轴交于点D.
(1)求抛物线的解析式;
(2)证明:△DBO∽△EBC;
(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.
15.如图1,抛物线y=ax2﹣6x+c与x轴交于点A(﹣5,0)、B(﹣1,0),与y轴交于点C(0,﹣5),点P是抛物线上的动点,连接PA、PC,PC与x轴交于点D.
(1)求该抛物线所对应的函数解析式;
(2)若点P的坐标为(﹣2,3),请求出此时△APC的面积;
(3)过点P作y轴的平行线交x轴于点H,交直线AC于点E,如图2.
①若∠APE=∠CPE,求证:;
②△APE能否为等腰三角形?若能,请求出此时点P的坐标;若不能,请说明理由.
16.如图,二次函数y=ax2+bx+c的图象交x轴于A、B两点,交y轴于点C,且B(1,0),C(0,3),将△BOC绕点O按逆时针方向旋转90°,C点恰好与A重合.
(1)求该二次函数的解析式;
(2)若点P为线段AB上的任一动点,过点P作PE∥AC,交BC于点E,连结CP,求△PCE面积S的最大值;
(3)设抛物线的顶点为M,Q为它的图象上的任一动点,若△OMQ为以OM为底的等腰三角形,求Q点的坐标.
17.如图,已知抛物线yx2x+2与x轴交于A、B两点,与y轴交于点C
(1)求点A,B,C的坐标;
(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;
(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.
18如图,抛物线y=ax2+2x﹣3与x轴交于A、B两点,且B(1,0)
(1)求抛物线的解析式和点A的坐标;
(2)如图1,点P是直线y=x上的动点,当直线y=x平分∠APB时,求点P的坐标;
(3)如图2,已知直线yx分别与x轴、y轴交于C、F两点,点Q是直线CF下方的抛物线上的一个动点,过点Q作y轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE.问:以QD为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.
19.如图,在平面直角坐标系中,抛物线yx2x与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.
(1)求直线AE的解析式;
(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;
(3)点G是线段CE的中点,将抛物线yx2x沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
20.如图,在平面直角坐标系xOy,已知二次函数yx2+bx的图象过点A(4,0),顶点为B,连接AB、BO.
(1)求二次函数的表达式;
(2)若C是BO的中点,点Q在线段AB上,设点B关于直线CQ的对称点为B',当△OCB'为等边三角形时,求BQ的长度;
(3)若点D在线段BO上,OD=2DB,点E、F在△OAB的边上,且满足△DOF与△DEF全等,求点E的坐标.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)